• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑固相分解的含水合物沉积物体积应变分析模型

袁思敏, 王路君, 朱斌, 陈云敏

袁思敏, 王路君, 朱斌, 陈云敏. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
引用本文: 袁思敏, 王路君, 朱斌, 陈云敏. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
Citation: YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008

考虑固相分解的含水合物沉积物体积应变分析模型  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

国家自然科学基金面上项目 52078458

浙江省自然科学基金重大项目 LCD19E090001

浙江省自然科学基金探索项目 LY21E080026

详细信息
    作者简介:

    袁思敏(1997—),女,博士研究生,主要从事水合物沉积物基本特性研究。E-mail: yuansimin@zju.edu.cn

    通讯作者:

    王路君, E-mail: lujunwang@zju.edu.cn

  • 中图分类号: TU43

Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation

  • 摘要: 水合物开采通过打破固相水合物相平衡状态使其分解为水和气体,含水合物沉积物(gas hydrate-bearing sediment, GHBS)固相组分减少使孔隙体积增大,土骨架间胶结作用弱化,产生的水和气显著改变孔隙压力,造成沉积物软化和体积收缩。基于GHBS三轴压缩试验,考虑水合物降压分解过程对GHBS变形特性的影响,将固相骨架分为惰性土骨架和可分解的水合物固相,引入随水合物饱和度变化的压缩参数,建立了能够描述GHBS应力和水合物分解耦合作用、体积应变随时间变化的分析模型。该模型能够描述降压速率、降压幅值及水合物分解速率对GHBS变形特性的影响,结果表明:降压速率增大,降压阶段体积应变速率增大,达到相平衡时间缩短,降压开采时应综合考虑开采过程中储层变形速率和开采效率间的关系;不同粒径组成的沉积物水合物分解速率存在差异,分解速率对储层变形速率影响明显;降压开采稳定孔压影响储层最终沉降量,降低稳定孔压可以提高开采效率,但最终变形量增大。
    Abstract: In the exploitation of gas hydrate, recovering methane from gas hydrate breaks the phase equilibrium state of hydrate and produces water and gas, which reduces the quality of the solid phase in the gas hydrate-bearing sediment (GHBS). Based on the triaxial tests as well as the mechanical properties of GHBS, the solid skeleton is divided into indecomposable soil skeleton and decomposable solid hydrate. The compression parameters of GHBS varying with hydrate saturation are introduced to establish an analysis model that can describe the coupling effects of stress, hydrate decomposition and variation of volumetric strain of GHBS with time during hydrate dissociation process. The proposed model can describe the effects of depressurization rate, pore pressure reduction and hydrate dissociation rate on deformation of GHBS. The numerical results show that with the increase of the depressurization rate, the volumetric strain rate increases in depressurization stage and the time to reach phase equilibrium decreases. The hydrate dissociation rate that has an obvious effect on the deformation rate of reservoir is different in sediments with different particle sizes. The stable pore pressure affects the final settlement of the reservoir, and reducing it can improve the efficiency of gas hydrate exploitation, however, the larger the reduction of pore pressure, the larger the volumetric strain.
  • 各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。

    小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。

    结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。

    本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。

    土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]

    表  1  湛江黏土平均物理力学性质指标与颗粒组成
    Table  1.  Physical and mechanical indexes and particle composition of Zhanjiang clay
    重度γ/(kN·m-3)含水率w/%孔隙比e渗透系数K/(cm·s-1)液限wL/%塑限wP/%塑性指数IP结构屈服应力σk/kPa无侧限抗压强度/kPa灵敏度St颗粒组成/%
    >0.05/mm0.005~0.05/mm0.002~0.005/mm<0.002/mm
    17.152.981.442.73×10−859.628.131.5400143.57.28.239.520.731.6
    下载: 导出CSV 
    | 显示表格

    图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为α,即竖直方向试样为90°,水平方向试样为0°。针对α为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。

    图  1  试样示意图与试验设备
    Figure  1.  Schematic diagram of specimens and test apparatus

    试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:

    G=ρ(2πfH/β)2, (1)

    式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。

    试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。

    图2所示,不同方向试样动剪切模量G和剪应变γ的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ曲线随围压增大而上移,围压超过600~700 kPa,G-γ曲线随围压增长而下移,与通常软黏土G-γ曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ曲线规律影响较大。

    图  2  不同方向试样剪切模量G与剪应变γ关系
    Figure  2.  Relationship between shear modulus G and shear strainγ for specimens in different directions

    湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:

    τ=γa+bγ, (2)

    式中,a,b为拟合参数。式(2)可以写为

    1/G=a+bγ (3)

    式(3)中,当γ趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3曲线。随围压增大,不同方向试样Gmax/F(e)-σ3曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk左右时,曲线出现转折。

    图  3  不同方向试样Gmax/F(e)与围压σ3的关系
    Figure  3.  Relationship between Gmax /F(e) and confining pressure σ3 for specimens in different directions

    为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:

    Kα=Dα/D90°, (4)

    式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。

    Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角α变化,Kα整体上随α增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。

    图  4  不同方向试样Kα与围压σ3的关系
    Figure  4.  Relationship between Kα and confining pressure σ3 for specimens in different directions

    当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于σk时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。

    图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:

    Gmax/F(e)=A(1+(σmpa)n)1+B(1+(σmpa)n)(kr+1kr1+(ησmpc)λ) (5)

    式中 A,B,n,kr,ηλ为反映各种应力历史和土体性质的参数;σm为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk,不同方向试样压缩试验得到的σk差异较小,均取400 kPa。

    采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2

    图  5  不同方向试样的Gmax/F(e)与固结围压lgσ3关系曲线
    Figure  5.  Curves of Gmax/F(e) and confining pressure lgσ3 of specimens in different directions
    表  2  不同方向试样拟合参数
    Table  2.  Fitting parameters of specimens in different directions
    αA/MPaBnkrηλR2
    0°39.924890.166780.543090.350920.564336.429980.99251
    22.5°37.899510.159990.582640.354620.564266.371470.99075
    45°33.763280.151680.546420.377400.554026.384730.99432
    67.5°31.154760.157610.562540.424990.608896.077370.99727
    90°29.754220.157430.560670.444480.577506.056690.99835
    下载: 导出CSV 
    | 显示表格

    分析表2中拟合参数与试样方向的关系,可得参数A,kr,λ和试样轴线与土体沉积平面夹角α呈线性关系(图6),参数B,n,ηα增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。

    图  6  拟合参数A,krλ与试样方向的关系
    Figure  6.  Relationship between fitting parameters A, kr and λ with directions of specimens

    图6中参数A,kr,λ的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:

    Gmax/F(e)=(c1α+c2)(1+(σmpa)n)1+B(1+(σmpa)n)·((d1α+d2)+1(d1α+d2)1+(ησmpc)(e1α+e2)) (6)

    式中σm为围压;α表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pcσk,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。

    (1)在同一围压下,不同α试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kαα增大而减小。当围压低于和高于σk时,同一α试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。

    (2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在σk左右时出现转折。

    (3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。

  • 图  1   单元体应力状态随时间发展

    Figure  1.   Change of stress states with time in GHBS

    图  2   单元体降压分解过程体积应变路径

    Figure  2.   Volumetric strain paths of depressurization process in GHBS

    图  3   参数ε确定

    Figure  3.   Determination method for parameter ε

    图  4   水合物饱和度对GHBS临界状态线修正斜率χ0的影响

    Figure  4.   Influences of hydrate saturation on slopes of critical state lines of GHBS

    图  5   参数C确定

    Figure  5.   Determination method for parameter C

    图  6   GHBS偏应力–体积应变曲线形态参数

    Figure  6.   Morphological parameters of q-εv curves of GHBS

    图  7   参数ε确定

    Figure  7.   Determination method for parameter ε

    图  8   本文模型模拟结果与Hyodo等[13]试验对比

    Figure  8.   Comparison of results by proposed model and tests[13]

    图  9   本文模型模拟结果与Choi等[15]试验对比

    Figure  9.   Comparison of results by proposed model and tests[15]

    图  10   降压速率D对体积应变的影响

    Figure  10.   Influence of depressurization rate D on volumetric strain of GHBS

    图  11   降压幅值Δu对体积应变的影响

    Figure  11.   Influences of pore pressure reduction Δu on volumetric strain of GHBS

    图  12   水合物分解速率C对体积应变的影响

    Figure  12.   Influences of hydrate dissociation rate C on volumetric strain of GHBS

    表  1   Hyodo等[13]试验条件和试样参数

    Table  1   Test conditions of Hyodo et al[13]

    试验名称 孔隙度/% 水合物饱和度/% 降压速率/(MPa·min-1) 偏应力/MPa 孔隙压力/MPa 有效围压/MPa 平均有效主应力/MPa
    D-K0-01 39.9 51.9 0.1 3 10→4.3→3.5 2→7.7→8.5 3→8.7→9.5
    D-K0-04 39.9 50.1 0.5 3 10→4.3→3.5 2→7.7→8.5 3→8.7→9.5
    下载: 导出CSV

    表  2   模型参数

    Table  2   Model parameters of Hyodo et al

    A χ ε C/min-1
    0.1 0.057 0.04 0.056
    下载: 导出CSV

    表  3   Choi等[15]试验条件和试样参数

    Table  3   Test conditions of Choi et al[15]

    试验名称 孔隙度/% 水合物饱和度/% 降压速率/(MPa·min-1) 偏应力/MPa 孔隙压力/MPa 有效围压/MPa 平均有效主应力/MPa
    #2 37 40.4 0.024 1.5 5.52→3.36→3 0.69→2.85→3.21 1.19→3.35→3.71
    下载: 导出CSV

    表  4   模型参数

    Table  4   Model parameters of Choi et al[15]

    A t0/min χ0 χ ε C/min-1
    0.1 90 0.069 0.059 0.006 0.011
    下载: 导出CSV
  • [1]

    SLOAN E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2): 191–196.

    [2] 方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018(4): 34–42, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

    FANG Yuan, ZHANG Wan-yi, CAO Jia-wen, et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources, 2018(4): 34–42, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

    [3]

    SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–359. doi: 10.1038/nature02135

    [4]

    WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.

    [5]

    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299–314. doi: 10.1016/j.sandf.2013.02.010

    [6]

    KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 96–107. doi: 10.1016/j.jngse.2017.05.008

    [7] 吴杨, 崔杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

    WU Yang, CUI Jie, LIAO Jing-rong, et al. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

    [8]

    WU L Y, GROZIC J L. Laboratory analysis of carbon dioxide hydrate-bearing sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 547–550. doi: 10.1061/(ASCE)1090-0241(2008)134:4(547)

    [9] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234–1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234–1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    [10]

    YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 2007, 112: B04106.

    [11] 张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(增刊1): 303–308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

    ZHANG Xu-hui, LU Xiao-bing, WANG Shu-yun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011, 32(S1): 303–308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

    [12] 刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565–1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering 2013, 35(8): 1565–1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    [13]

    HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2014, 51: 52–62. doi: 10.1016/j.marpetgeo.2013.11.015

    [14]

    LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. doi: 10.3390/en11071819

    [15]

    CHOI J H, LIN J S, DAI S, et al. Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization[J]. Geomechanics for Energy and the Environment, 2020, 23: 100187. doi: 10.1016/j.gete.2020.100187

    [16]

    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116: B06102.

    [17]

    MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5: 4057–4075. doi: 10.3390/en5104057

    [18]

    UCHIDA S, SOGA K, YAMAMOTA K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.

    [19]

    SULTAN N, GARZIGLIA S. Geomechanical constitutive modeling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. 2011. Edinburgh.

    [20] 蒋明镜, 刘俊, 周卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学, 2018, 39(4): 1153–1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

    JIANG Ming-jing, LIU Jun, ZHOU Wei, et al. An elasto-plastic constitutive model for methane hydrate bearing sediments[J]. Rock and Soil Mechanics, 2018, 39(4): 1153–1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

    [21] 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

    JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

    [22] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116–132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    WEI Chang-fu, YAN Rong-tao, TIAN Hui-hui, et al. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 2020, 40(8): 116–132. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009

    [23] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    [24]

    CHEN Y M, KE H, FREDLUND D G, et al. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(5): 706–717. doi: 10.1061/(ASCE)GT.1943-5606.0000273

    [25] 柯翰, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

    KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

    [26]

    LEE J Y, SANTAMARINA J C, RUPPEL C. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03007.

    [27] 李振赫. 天然气水合物降压开采中沉积物变形响应试验研究[D]. 天津: 天津大学, 2018.

    LI Zhen-he. Experimental Study on Sediment Deformation During Natural Gas Hydrate Dissociation by Depressurization[D]. Tianjin: Tianjin University, 2018. (in Chinese)

    [28] 张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 136–143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    ZHANG Yu, CAI Jing, LI Xiao-sen, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 136–143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    [29] 文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926–931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    WEN Long, ZHOU Xue-bing, LIANG De-qing. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926–931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    [30] 蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 35(4): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

    JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 35(4): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

    [31]

    WANG Y, FENG J C, LI X S, et al. Evaluation of gas production from marine hydrate deposits at the GMGS2-site 8, Pearl River mouth basin, South China Sea[J]. Energies, 2016, 9: 222. doi: 10.3390/en9030222

    [32]

    WU Y, HYODO M, CUI J. On the critical state characteristics of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2020, 116: 104342. doi: 10.1016/j.marpetgeo.2020.104342

    [33] 李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学, 2013.

    LI Yang-hui. Study on Strength and Deformation Behaviors of Methane Hydrate-Bearing Sediments[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)

  • 期刊类型引用(2)

    1. 高志傲,孔令伟,王双娇,黄珏皓,赵浩武. 循环荷载下不同裂隙方向饱和原状膨胀土动力特性试验研究. 岩土工程学报. 2025(04): 736-748 . 本站查看
    2. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看

    其他类型引用(1)

图(12)  /  表(4)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  22
  • PDF下载量:  126
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

/

返回文章
返回