• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑固相分解的含水合物沉积物体积应变分析模型

袁思敏, 王路君, 朱斌, 陈云敏

袁思敏, 王路君, 朱斌, 陈云敏. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
引用本文: 袁思敏, 王路君, 朱斌, 陈云敏. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
Citation: YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008

考虑固相分解的含水合物沉积物体积应变分析模型  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

国家自然科学基金面上项目 52078458

浙江省自然科学基金重大项目 LCD19E090001

浙江省自然科学基金探索项目 LY21E080026

详细信息
    作者简介:

    袁思敏(1997—),女,博士研究生,主要从事水合物沉积物基本特性研究。E-mail: yuansimin@zju.edu.cn

    通讯作者:

    王路君, E-mail: lujunwang@zju.edu.cn

  • 中图分类号: TU43

Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation

  • 摘要: 水合物开采通过打破固相水合物相平衡状态使其分解为水和气体,含水合物沉积物(gas hydrate-bearing sediment, GHBS)固相组分减少使孔隙体积增大,土骨架间胶结作用弱化,产生的水和气显著改变孔隙压力,造成沉积物软化和体积收缩。基于GHBS三轴压缩试验,考虑水合物降压分解过程对GHBS变形特性的影响,将固相骨架分为惰性土骨架和可分解的水合物固相,引入随水合物饱和度变化的压缩参数,建立了能够描述GHBS应力和水合物分解耦合作用、体积应变随时间变化的分析模型。该模型能够描述降压速率、降压幅值及水合物分解速率对GHBS变形特性的影响,结果表明:降压速率增大,降压阶段体积应变速率增大,达到相平衡时间缩短,降压开采时应综合考虑开采过程中储层变形速率和开采效率间的关系;不同粒径组成的沉积物水合物分解速率存在差异,分解速率对储层变形速率影响明显;降压开采稳定孔压影响储层最终沉降量,降低稳定孔压可以提高开采效率,但最终变形量增大。
    Abstract: In the exploitation of gas hydrate, recovering methane from gas hydrate breaks the phase equilibrium state of hydrate and produces water and gas, which reduces the quality of the solid phase in the gas hydrate-bearing sediment (GHBS). Based on the triaxial tests as well as the mechanical properties of GHBS, the solid skeleton is divided into indecomposable soil skeleton and decomposable solid hydrate. The compression parameters of GHBS varying with hydrate saturation are introduced to establish an analysis model that can describe the coupling effects of stress, hydrate decomposition and variation of volumetric strain of GHBS with time during hydrate dissociation process. The proposed model can describe the effects of depressurization rate, pore pressure reduction and hydrate dissociation rate on deformation of GHBS. The numerical results show that with the increase of the depressurization rate, the volumetric strain rate increases in depressurization stage and the time to reach phase equilibrium decreases. The hydrate dissociation rate that has an obvious effect on the deformation rate of reservoir is different in sediments with different particle sizes. The stable pore pressure affects the final settlement of the reservoir, and reducing it can improve the efficiency of gas hydrate exploitation, however, the larger the reduction of pore pressure, the larger the volumetric strain.
  • 图  1   单元体应力状态随时间发展

    Figure  1.   Change of stress states with time in GHBS

    图  2   单元体降压分解过程体积应变路径

    Figure  2.   Volumetric strain paths of depressurization process in GHBS

    图  3   参数ε确定

    Figure  3.   Determination method for parameter ε

    图  4   水合物饱和度对GHBS临界状态线修正斜率χ0的影响

    Figure  4.   Influences of hydrate saturation on slopes of critical state lines of GHBS

    图  5   参数C确定

    Figure  5.   Determination method for parameter C

    图  6   GHBS偏应力–体积应变曲线形态参数

    Figure  6.   Morphological parameters of q-εv curves of GHBS

    图  7   参数ε确定

    Figure  7.   Determination method for parameter ε

    图  8   本文模型模拟结果与Hyodo等[13]试验对比

    Figure  8.   Comparison of results by proposed model and tests[13]

    图  9   本文模型模拟结果与Choi等[15]试验对比

    Figure  9.   Comparison of results by proposed model and tests[15]

    图  10   降压速率D对体积应变的影响

    Figure  10.   Influence of depressurization rate D on volumetric strain of GHBS

    图  11   降压幅值Δu对体积应变的影响

    Figure  11.   Influences of pore pressure reduction Δu on volumetric strain of GHBS

    图  12   水合物分解速率C对体积应变的影响

    Figure  12.   Influences of hydrate dissociation rate C on volumetric strain of GHBS

    表  1   Hyodo等[13]试验条件和试样参数

    Table  1   Test conditions of Hyodo et al[13]

    试验名称 孔隙度/% 水合物饱和度/% 降压速率/(MPa·min-1) 偏应力/MPa 孔隙压力/MPa 有效围压/MPa 平均有效主应力/MPa
    D-K0-01 39.9 51.9 0.1 3 10→4.3→3.5 2→7.7→8.5 3→8.7→9.5
    D-K0-04 39.9 50.1 0.5 3 10→4.3→3.5 2→7.7→8.5 3→8.7→9.5
    下载: 导出CSV

    表  2   模型参数

    Table  2   Model parameters of Hyodo et al

    A χ ε C/min-1
    0.1 0.057 0.04 0.056
    下载: 导出CSV

    表  3   Choi等[15]试验条件和试样参数

    Table  3   Test conditions of Choi et al[15]

    试验名称 孔隙度/% 水合物饱和度/% 降压速率/(MPa·min-1) 偏应力/MPa 孔隙压力/MPa 有效围压/MPa 平均有效主应力/MPa
    #2 37 40.4 0.024 1.5 5.52→3.36→3 0.69→2.85→3.21 1.19→3.35→3.71
    下载: 导出CSV

    表  4   模型参数

    Table  4   Model parameters of Choi et al[15]

    A t0/min χ0 χ ε C/min-1
    0.1 90 0.069 0.059 0.006 0.011
    下载: 导出CSV
  • [1]

    SLOAN E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2): 191–196.

    [2] 方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018(4): 34–42, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

    FANG Yuan, ZHANG Wan-yi, CAO Jia-wen, et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources, 2018(4): 34–42, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

    [3]

    SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–359. doi: 10.1038/nature02135

    [4]

    WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.

    [5]

    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299–314. doi: 10.1016/j.sandf.2013.02.010

    [6]

    KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 96–107. doi: 10.1016/j.jngse.2017.05.008

    [7] 吴杨, 崔杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

    WU Yang, CUI Jie, LIAO Jing-rong, et al. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

    [8]

    WU L Y, GROZIC J L. Laboratory analysis of carbon dioxide hydrate-bearing sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 547–550. doi: 10.1061/(ASCE)1090-0241(2008)134:4(547)

    [9] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234–1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234–1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    [10]

    YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 2007, 112: B04106.

    [11] 张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(增刊1): 303–308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

    ZHANG Xu-hui, LU Xiao-bing, WANG Shu-yun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011, 32(S1): 303–308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

    [12] 刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565–1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering 2013, 35(8): 1565–1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    [13]

    HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2014, 51: 52–62. doi: 10.1016/j.marpetgeo.2013.11.015

    [14]

    LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. doi: 10.3390/en11071819

    [15]

    CHOI J H, LIN J S, DAI S, et al. Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization[J]. Geomechanics for Energy and the Environment, 2020, 23: 100187. doi: 10.1016/j.gete.2020.100187

    [16]

    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116: B06102.

    [17]

    MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5: 4057–4075. doi: 10.3390/en5104057

    [18]

    UCHIDA S, SOGA K, YAMAMOTA K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.

    [19]

    SULTAN N, GARZIGLIA S. Geomechanical constitutive modeling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. 2011. Edinburgh.

    [20] 蒋明镜, 刘俊, 周卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学, 2018, 39(4): 1153–1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

    JIANG Ming-jing, LIU Jun, ZHOU Wei, et al. An elasto-plastic constitutive model for methane hydrate bearing sediments[J]. Rock and Soil Mechanics, 2018, 39(4): 1153–1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

    [21] 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

    JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

    [22] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116–132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    WEI Chang-fu, YAN Rong-tao, TIAN Hui-hui, et al. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 2020, 40(8): 116–132. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009

    [23] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    [24]

    CHEN Y M, KE H, FREDLUND D G, et al. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(5): 706–717. doi: 10.1061/(ASCE)GT.1943-5606.0000273

    [25] 柯翰, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

    KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

    [26]

    LEE J Y, SANTAMARINA J C, RUPPEL C. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03007.

    [27] 李振赫. 天然气水合物降压开采中沉积物变形响应试验研究[D]. 天津: 天津大学, 2018.

    LI Zhen-he. Experimental Study on Sediment Deformation During Natural Gas Hydrate Dissociation by Depressurization[D]. Tianjin: Tianjin University, 2018. (in Chinese)

    [28] 张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 136–143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    ZHANG Yu, CAI Jing, LI Xiao-sen, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 136–143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

    [29] 文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926–931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    WEN Long, ZHOU Xue-bing, LIANG De-qing. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926–931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

    [30] 蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 35(4): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

    JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 35(4): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

    [31]

    WANG Y, FENG J C, LI X S, et al. Evaluation of gas production from marine hydrate deposits at the GMGS2-site 8, Pearl River mouth basin, South China Sea[J]. Energies, 2016, 9: 222. doi: 10.3390/en9030222

    [32]

    WU Y, HYODO M, CUI J. On the critical state characteristics of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2020, 116: 104342. doi: 10.1016/j.marpetgeo.2020.104342

    [33] 李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学, 2013.

    LI Yang-hui. Study on Strength and Deformation Behaviors of Methane Hydrate-Bearing Sediments[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)

  • 期刊类型引用(5)

    1. 陈祎,刘明昊,赵智慧. 钻孔灌注桩废弃泥浆快速絮凝脱水技术与机理研究. 建筑施工. 2025(01): 6-11 . 百度学术
    2. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 . 百度学术
    3. 孙万吉,陈建,梁志学,李朝阳,赵永享. 碱渣-矿渣-水玻璃对流态固化土的影响研究. 中国新技术新产品. 2024(19): 116-118+140 . 百度学术
    4. 唐伟超,赵东平,王风,朱龙,汤青山,和琦. 砂卵土-泥岩复合地层土压平衡盾构渣土脱水试验. 现代隧道技术. 2024(S1): 684-693 . 百度学术
    5. 张达志. 基桩施工产生的废弃泥浆絮凝脱水后的土体工程性质研究. 四川水力发电. 2024(S2): 29-34 . 百度学术

    其他类型引用(3)

图(12)  /  表(4)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  22
  • PDF下载量:  126
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回