Cross-isotropic strength criteria based on spatial plane variation
-
摘要: 自然界中的岩土类材料受天然沉积作用影响,往往具有显著的横观各向同性特征。土结构单元在不同方向上的强度和变形的差异是影响大型土木水利工程设计和施工时需要考虑的主要问题,开展岩土材料横观各向同性研究对实际工程结构安全稳定相关研究具有重要的科学意义。在对八面体主应力空间域强度变化与空间滑动面、应力状态三者关系研究的基础上,定义一个反映应力条件与材料特性的综合参数,通过分析该参量与破坏应力、应力状态的关系,明确了该参量的物理意义,并基于空间面强度理论考虑3个主应力空间面发生滑动破坏,假定该空间面上剪应力和法向应力之比为常数,建立考虑岩土材料的空间滑动面随着空间应力域应力条件变化的横观各向同性破坏准则。通过与试验结果对比表明,所建议的基于空间面变化的横观各向同性破坏准则可以较好地反映材料的强度特性,特别对主应力轴发生偏转时应力域的强度预测具有较好的适用性。Abstract: The geotechnical materials in nature are affected by the natural sedimentation and often have significant cross-isotropic characteristics. The difference in strength and deformation of structural units of soil in different directions is the main issue that should be considered when affecting the design and construction of large-scale civil and hydraulic projects. The research on the cross isotropy of geotechnical materials is of great scientific significance to the safety and stability of actual engineering structures. Based on the study on the relationship among the strength variation of octahedral principal stress space domain, the spatial mobilized plane and the stress state, a comprehensive parameter reflecting the stress conditions and material properties is defined. By analyzing the relationship among this parameter, the failure stress and the stress state, the physical meaning of the parameter is clarified, and based on the space plane strength theory, the sliding failure of the three principal stress planes is considered. It is assumed that the space on the ratio of the shear stress to the normal stress is constant, and a cross-isotropic failure criterion is established considering that the spatial sliding surface of geomaterials changes with the stress conditions of the spatial stress domain. Compared with the experimental results, it is shown that the cross-isotropic failure criterion based on the spatial mobilized plane variation can better reflect the strength characteristics of the materials, and it is particularly applicable to the strength prediction of the stress region when the principal stress axis deflects.
-
Keywords:
- spatial mobilized plane /
- stress condition /
- cross isotropy /
- failure criterion
-
-
-
[1] 路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54–63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three- dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm
[2] 罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm
[3] 王林, 龙冈文夫. 关于沉积软岩固有各向异性特性的研究[J]. 岩石力学与工程学报, 2003, 22(6): 894–898. doi: 10.3321/j.issn:1000-6915.2003.06.003 WANG Lin, TATSUOKA Fumio. Examining anisotropy of sedimentary soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 894–898. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.06.003
[4] ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38. doi: 10.3208/sandf1972.18.25
[5] 殷宗泽. 土的侧膨胀性及其对土石坝应力变形的影响[J]. 水利学报, 2000, 31(7): 49–54, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm YIN Zong-ze. The effect of soil lateral dilation behavior on stress and strain of earth and rockfill dams[J]. Journal of Hydraulic Engineering, 2000, 31(7): 49–54, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm
[6] MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59–70.
[7] LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037–1053. doi: 10.1061/AJGEB6.0000204
[8] MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119–127. doi: 10.3208/sandf1972.30.2_119
[9] 宋美娜. 考虑各向异性的广义非线性强度准则[D]. 北京: 北京航空航天大学, 2008. SONG Mei-na. Generalized Nonlinear Strength Criterion Considering Anisotropy[D]. Beijing: Beihang University, 2008. (in Chinese)
[10] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm
[11] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868–880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
[12] DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319–1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
[13] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43–50. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm
[14] YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853–866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
[15] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
[16] YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78.
[17] 许萍, 邵生俊, 张帅. 黄土(Q3)横观各向同性强度准则研究[J]. 岩土工程学报, 2018, 40(1): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm
-
期刊类型引用(5)
1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术
其他类型引用(7)