Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于空间面变化的横观各向同性破坏准则研究

许萍, 邵生俊, 房凌云, 孙志军

许萍, 邵生俊, 房凌云, 孙志军. 基于空间面变化的横观各向同性破坏准则研究[J]. 岩土工程学报, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
引用本文: 许萍, 邵生俊, 房凌云, 孙志军. 基于空间面变化的横观各向同性破坏准则研究[J]. 岩土工程学报, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
Citation: XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007

基于空间面变化的横观各向同性破坏准则研究  English Version

基金项目: 

国家自然科学基金青年基金项目 51808445

陕西省科技创新团队 2022TD-01

陕西省自然科学基础研究项目 2022JM-216

详细信息
    作者简介:

    许萍(1986—),女,陕西西安人,讲师,主要从事岩土材料测试及土石坝灾害防治。E-mail:xuping1986@xaut.edu.cn

  • 中图分类号: TU43

Cross-isotropic strength criteria based on spatial plane variation

  • 摘要: 自然界中的岩土类材料受天然沉积作用影响,往往具有显著的横观各向同性特征。土结构单元在不同方向上的强度和变形的差异是影响大型土木水利工程设计和施工时需要考虑的主要问题,开展岩土材料横观各向同性研究对实际工程结构安全稳定相关研究具有重要的科学意义。在对八面体主应力空间域强度变化与空间滑动面、应力状态三者关系研究的基础上,定义一个反映应力条件与材料特性的综合参数,通过分析该参量与破坏应力、应力状态的关系,明确了该参量的物理意义,并基于空间面强度理论考虑3个主应力空间面发生滑动破坏,假定该空间面上剪应力和法向应力之比为常数,建立考虑岩土材料的空间滑动面随着空间应力域应力条件变化的横观各向同性破坏准则。通过与试验结果对比表明,所建议的基于空间面变化的横观各向同性破坏准则可以较好地反映材料的强度特性,特别对主应力轴发生偏转时应力域的强度预测具有较好的适用性。
    Abstract: The geotechnical materials in nature are affected by the natural sedimentation and often have significant cross-isotropic characteristics. The difference in strength and deformation of structural units of soil in different directions is the main issue that should be considered when affecting the design and construction of large-scale civil and hydraulic projects. The research on the cross isotropy of geotechnical materials is of great scientific significance to the safety and stability of actual engineering structures. Based on the study on the relationship among the strength variation of octahedral principal stress space domain, the spatial mobilized plane and the stress state, a comprehensive parameter reflecting the stress conditions and material properties is defined. By analyzing the relationship among this parameter, the failure stress and the stress state, the physical meaning of the parameter is clarified, and based on the space plane strength theory, the sliding failure of the three principal stress planes is considered. It is assumed that the space on the ratio of the shear stress to the normal stress is constant, and a cross-isotropic failure criterion is established considering that the spatial sliding surface of geomaterials changes with the stress conditions of the spatial stress domain. Compared with the experimental results, it is shown that the cross-isotropic failure criterion based on the spatial mobilized plane variation can better reflect the strength characteristics of the materials, and it is particularly applicable to the strength prediction of the stress region when the principal stress axis deflects.
  • 图  1   主应力状态与八面体应力空间的关系

    Figure  1.   Relationship between principal stress state and spatial domain of octahedral stress

    图  2   空间滑动面示意图

    Figure  2.   Schematic diagram of generalized space plane

    图  3   应力空间示意图

    Figure  3.   Diagram of principal stress space

    图  4   横观各向同性参数Φmob随径向偏角θ变化

    Figure  4.   Variation of anisotropic parameter Φmob with radial declination θ

    图  5   空间滑动面上的应力

    Figure  5.   Stresses on spatial mobilized plane

    图  6   偏平面上的空间面变化的横观各向同性破坏准则

    Figure  6.   Cross-isotropic failure criteria on deviatoric plane under rotation of principal stress space

    图  7   横观各向同性破坏准则比较

    Figure  7.   Comparison between test results and failure criteria for cross-anisotropic loess

  • [1] 路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54–63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three- dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    [2] 罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm

    LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm

    [3] 王林, 龙冈文夫. 关于沉积软岩固有各向异性特性的研究[J]. 岩石力学与工程学报, 2003, 22(6): 894–898. doi: 10.3321/j.issn:1000-6915.2003.06.003

    WANG Lin, TATSUOKA Fumio. Examining anisotropy of sedimentary soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 894–898. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.06.003

    [4]

    ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38. doi: 10.3208/sandf1972.18.25

    [5] 殷宗泽. 土的侧膨胀性及其对土石坝应力变形的影响[J]. 水利学报, 2000, 31(7): 49–54, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm

    YIN Zong-ze. The effect of soil lateral dilation behavior on stress and strain of earth and rockfill dams[J]. Journal of Hydraulic Engineering, 2000, 31(7): 49–54, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm

    [6]

    MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59–70.

    [7]

    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037–1053. doi: 10.1061/AJGEB6.0000204

    [8]

    MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119–127. doi: 10.3208/sandf1972.30.2_119

    [9] 宋美娜. 考虑各向异性的广义非线性强度准则[D]. 北京: 北京航空航天大学, 2008.

    SONG Mei-na. Generalized Nonlinear Strength Criterion Considering Anisotropy[D]. Beijing: Beihang University, 2008. (in Chinese)

    [10] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    [11]

    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868–880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)

    [12]

    DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319–1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)

    [13] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43–50. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm

    YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm

    [14]

    YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853–866. doi: 10.1061/(ASCE)EM.1943-7889.0000397

    [15] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    [16]

    YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78.

    [17] 许萍, 邵生俊, 张帅. 黄土(Q3)横观各向同性强度准则研究[J]. 岩土工程学报, 2018, 40(1): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm

    XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm

  • 期刊类型引用(5)

    1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
    2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
    3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
    4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
    5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术

    其他类型引用(7)

图(7)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-05-16
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回