Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks
-
摘要: 研究含多裂纹岩石的力学响应和裂纹行为对岩体结构的设计与稳定性分析具有重要的指导意义。提出了场富集有限元方法研究脆性岩石材料中多裂纹的演化规律,包括裂纹的起裂、扩展和连接过程。提出了多裂纹在扩展过程中出现的各种交汇情况的解决方案。场富集有限元方法可以直接处理复杂的交叉裂纹,而不需要像扩展有限元一样引入额外的富集函数。通过数值算例,充分说明了场富集有限元方法在处理各种复杂裂纹系统扩展演化方面的能力。Abstract: The study on the mechanical response and cracking behaviors of brittle rock materials with multiple cracks is of vital significance for the design and stability analysis of rock engineering structures. A field-enriched finite element method (FE-FEM) is proposed to study the evolution behaviors of multiple cracks in rock materials, including crack initiation, propagation and coalescence. The solutions to the crack coalescence problem during simulation are proposed. The field-enriched finite element method can directly deal with the complex multiple crack problem, while the extra enriched function needs to be introduced in the extended finite element method (XFEM). The analytical results of the present numerical examples demonstrate that the proposed numerical method has the capability to handle complex multiple crack propagation and coalescence.
-
-
图 7 无量纲应力强度因子K*的数值解和理论解[27]对比
Figure 7. Comparison of analytical and numerical normalized stress intensity factors at different B/W
表 1 裂纹扩展和交汇顺序
Table 1 Sequence of periodic crack propagation and coalescence
标记点 裂纹交汇顺序 点a 裂纹开始起裂 点b C2的裂尖与C4的T2和C5的T1相互吸引,C17的裂尖与C14的T2和C15的T1相互吸引 点c C1的T1,C3的T2,C16的T1,C18的T2同时扩展到模型边界 点d 裂纹贯穿整个模型试样 表 2 裂纹扩展和交汇顺序
Table 2 Sequence of random crack propagation and coalescence
标记点 裂纹交汇顺序 点a 裂纹开始起裂 点b C11的T2扩展到数值模型边界 点c C11的T1和C10的T2交汇 点d C10的T1与C14的T1交汇 点e C9的T1与C8交汇 点f C8的T1与C7交汇 点g C7的T1扩展到数值模型边界 点h C9的T2与C10的T1交汇 -
[1] FREIJ-AYOUB R, DYSKIN A V, GALYBIN A N. The dislocation approximation for calculating crack interaction[J]. International Journal of Fracture, 1997, 86(4): 57–62.
[2] RYBACZUK M, STOPPEL P. The fractal growth of fatigue defects in materials[J]. International Journal of Fracture, 2000, 103(1): 71–94. doi: 10.1023/A:1007635717332
[3] CHEN Y Z. General case of multiple crack problems in an infinite plate[J]. Engineering Fracture Mechanics, 1984, 20(4): 591–597. doi: 10.1016/0013-7944(84)90034-1
[4] CHENG H, ZHOU X P, ZHU J, et al. The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3481–3494. doi: 10.1007/s00603-016-0998-9
[5] ZHANG J Z, ZHOU X P. AE event rate characteristics of flawed granite: from damage stress to ultimate failure[J]. Geophysical Journal International, 2020, 222(2): 795–814. doi: 10.1093/gji/ggaa207
[6] CARPINTERI A, MONETTO I. Snap-back analysis of fracture evolution in multi-cracked solids using boundary element method[J]. International Journal of Fracture, 1999, 98(3/4): 225–241. doi: 10.1023/A:1018660600546
[7] DENDA M, DONG Y F. Complex variable approach to the BEM for multiple crack problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 141(3/4): 247–264.
[8] BUDYN E, ZI G, MOËS N, et al. A method for multiple crack growth in brittle materials without remeshing[J]. International Journal for Numerical Methods in Engineering, 2004, 61(10): 1741–1770. doi: 10.1002/nme.1130
[9] ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250: 65–88. doi: 10.1016/j.enggeo.2019.01.012
[10] WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89–115. doi: 10.1016/j.ijsolstr.2017.10.022
[11] AZADI H, KHOEI A R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8): 1017–1048. doi: 10.1002/nme.3002
[12] ZHOU X P, FU L, QIAN Q H. A 2D novel non-local lattice bond model for initiation and propagation of cracks in rock materials[J]. Engineering Analysis with Boundary Elements, 2021, 126: 181–199. doi: 10.1016/j.enganabound.2021.03.002
[13] ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. doi: 10.1007/s00603-014-0627-4
[14] JIA Z M, ZHOU X P, BERTO F. Compressive-shear fracture model of the phase-field method coupled with a modified Hoek–Brown criterion[J]. International Journal of Fracture, 2021, 229(2): 161–184. doi: 10.1007/s10704-021-00546-7
[15] XU D D, WU A Q, LI C. A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(6): 1256–1263. doi: 10.1016/j.jrmge.2019.02.007
[16] 石路杨, 余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学, 2014, 35(1): 263–272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm SHI Lu-yang, YU Tian-tang. Analysis of multiple crack growth using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(1): 263–272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm
[17] BARBIERI E, PETRINIC N, MEO M, et al. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2012, 90(2): 177–195. doi: 10.1002/nme.3313
[18] RABCZUK T, BORDAS S, ZI G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics[J]. Computational Mechanics, 2007, 40(3): 473–495. doi: 10.1007/s00466-006-0122-1
[19] YAU J F, WANG S S, CORTEN H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2): 335–341. doi: 10.1115/1.3153665
[20] SHIH C F, ASARO R J. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ⅰ—small scale yielding[J]. Journal of Applied Mechanics, 1988, 55(2): 299–316. doi: 10.1115/1.3173676
[21] ERDOGAN F, SIH G C. Closure to "discussion of 'on the crack extension in plates under plane loading and transverse shear'"[J]. Journal of Basic Engineering, 1963, 85(4): 527. doi: 10.1115/1.3656899
[22] ZHOU X P, JIA Z M, WANG L F. A field-enriched finite element method for brittle fracture in rocks subjected to mixed mode loading[J]. Engineering Analysis with Boundary Elements, 2021, 129: 105–124. doi: 10.1016/j.enganabound.2021.04.023
[23] SUKUMAR N, PRÉVOST J H. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ: computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513–7537. doi: 10.1016/j.ijsolstr.2003.08.002
[24] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[25] 刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm LIU Feng, ZHENG Hong, LI Chun-guang. The nmm-based efg method and simulation of crack propagation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm
[26] PALUSZNY A, MATTHÄI S K. Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3383–3397.
[27] CIVELEK M B, ERDOGAN F. Crack problems for a rectangular plate and an infinite strip[J]. International Journal of Fracture, 1982, 19(2): 139–159. doi: 10.1007/BF00016570