Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

场富集有限元方法模拟多裂纹起裂、扩展和连接过程

周小平, 贾志明

周小平, 贾志明. 场富集有限元方法模拟多裂纹起裂、扩展和连接过程[J]. 岩土工程学报, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002
引用本文: 周小平, 贾志明. 场富集有限元方法模拟多裂纹起裂、扩展和连接过程[J]. 岩土工程学报, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002
ZHOU Xiao-ping, JIA Zhi-ming. Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002
Citation: ZHOU Xiao-ping, JIA Zhi-ming. Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002

场富集有限元方法模拟多裂纹起裂、扩展和连接过程  English Version

基金项目: 

国家自然科学基金项目 51839009

详细信息
    作者简介:

    周小平(1970—),男,博士,教授,博士生导师,主要从事岩石力学与工程方面的研究工作。E-mail:xiao_ping_zhou@126.com

  • 中图分类号: TU451

Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks

  • 摘要: 研究含多裂纹岩石的力学响应和裂纹行为对岩体结构的设计与稳定性分析具有重要的指导意义。提出了场富集有限元方法研究脆性岩石材料中多裂纹的演化规律,包括裂纹的起裂、扩展和连接过程。提出了多裂纹在扩展过程中出现的各种交汇情况的解决方案。场富集有限元方法可以直接处理复杂的交叉裂纹,而不需要像扩展有限元一样引入额外的富集函数。通过数值算例,充分说明了场富集有限元方法在处理各种复杂裂纹系统扩展演化方面的能力。
    Abstract: The study on the mechanical response and cracking behaviors of brittle rock materials with multiple cracks is of vital significance for the design and stability analysis of rock engineering structures. A field-enriched finite element method (FE-FEM) is proposed to study the evolution behaviors of multiple cracks in rock materials, including crack initiation, propagation and coalescence. The solutions to the crack coalescence problem during simulation are proposed. The field-enriched finite element method can directly deal with the complex multiple crack problem, while the extra enriched function needs to be introduced in the extended finite element method (XFEM). The analytical results of the present numerical examples demonstrate that the proposed numerical method has the capability to handle complex multiple crack propagation and coalescence.
  • 图  1   相互作用积分的域形式

    Figure  1.   Domain form of interaction integral

    图  2   富集节点检索方式

    Figure  2.   Searching strategy of enriched nodes

    图  3   裂尖与裂尖交汇方式

    Figure  3.   Intersection strategy of two crack tips

    图  4   裂尖与裂纹段交汇方式

    Figure  4.   Intersection strategy of crack tip of a crack with crack segment of another crack

    图  5   裂尖到达自由边界

    Figure  5.   Crack tip approaching free boundary

    图  6   含3条平行裂纹的3点弯曲梁几何尺寸与加载条件

    Figure  6.   Geometry and loading condition of three-point bending beam containing three flaws

    图  7   无量纲应力强度因子K*的数值解和理论解[27]对比

    Figure  7.   Comparison of analytical and numerical normalized stress intensity factors at different B/W

    图  8   B=0.2W条件下的Von Mises云图和损伤图

    Figure  8.   Von Mises contour and damage field contour at B=0.2W

    图  9   B=2W条件下的Von Mises云图和损伤图

    Figure  9.   Von Mises contour and damage field contour at B=2W

    图  10   三点弯曲梁的载荷–位移曲线图

    Figure  10.   Load-displacement curves of three-point bending beam containing three flaws

    图  11   周期性裂纹几何和加载条件

    Figure  11.   Periodic crack geometry and loading conditions

    图  12   数值模型最终破坏图

    Figure  12.   Final failure of numerical model containing periodic cracks

    图  13   载荷–位移曲线

    Figure  13.   Load-displacement curves of plate containing periodic cracks

    图  14   随机分布裂纹的几何和加载条件

    Figure  14.   Random crack geometry and loading conditions

    图  15   数值模型最终破坏图

    Figure  15.   Final failure of numerical model containing random cracks

    图  16   载荷–位移曲线

    Figure  16.   Load-displacement curves of plate containing random cracks

    图  17   裂纹分布和几何加载条件

    Figure  17.   Distribution of multiple cracks and geometry and loading conditions

    图  18   复杂裂纹最终破坏图

    Figure  18.   Final failure of complex multiple cracks

    图  19   含复杂多裂纹板的载荷–位移曲线

    Figure  19.   Load-displacement curves of plate containing complex cracks

    表  1   裂纹扩展和交汇顺序

    Table  1   Sequence of periodic crack propagation and coalescence

    标记点 裂纹交汇顺序
    a 裂纹开始起裂
    b C2的裂尖与C4的T2和C5的T1相互吸引,C17的裂尖与C14的T2和C15的T1相互吸引
    c C1的T1,C3的T2,C16的T1,C18的T2同时扩展到模型边界
    d 裂纹贯穿整个模型试样
    下载: 导出CSV

    表  2   裂纹扩展和交汇顺序

    Table  2   Sequence of random crack propagation and coalescence

    标记点 裂纹交汇顺序
    a 裂纹开始起裂
    b C11的T2扩展到数值模型边界
    c C11的T1和C10的T2交汇
    d C10的T1与C14的T1交汇
    e C9的T1与C8交汇
    f C8的T1与C7交汇
    g C7的T1扩展到数值模型边界
    h C9的T2与C10的T1交汇
    下载: 导出CSV
  • [1]

    FREIJ-AYOUB R, DYSKIN A V, GALYBIN A N. The dislocation approximation for calculating crack interaction[J]. International Journal of Fracture, 1997, 86(4): 57–62.

    [2]

    RYBACZUK M, STOPPEL P. The fractal growth of fatigue defects in materials[J]. International Journal of Fracture, 2000, 103(1): 71–94. doi: 10.1023/A:1007635717332

    [3]

    CHEN Y Z. General case of multiple crack problems in an infinite plate[J]. Engineering Fracture Mechanics, 1984, 20(4): 591–597. doi: 10.1016/0013-7944(84)90034-1

    [4]

    CHENG H, ZHOU X P, ZHU J, et al. The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3481–3494. doi: 10.1007/s00603-016-0998-9

    [5]

    ZHANG J Z, ZHOU X P. AE event rate characteristics of flawed granite: from damage stress to ultimate failure[J]. Geophysical Journal International, 2020, 222(2): 795–814. doi: 10.1093/gji/ggaa207

    [6]

    CARPINTERI A, MONETTO I. Snap-back analysis of fracture evolution in multi-cracked solids using boundary element method[J]. International Journal of Fracture, 1999, 98(3/4): 225–241. doi: 10.1023/A:1018660600546

    [7]

    DENDA M, DONG Y F. Complex variable approach to the BEM for multiple crack problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 141(3/4): 247–264.

    [8]

    BUDYN E, ZI G, MOËS N, et al. A method for multiple crack growth in brittle materials without remeshing[J]. International Journal for Numerical Methods in Engineering, 2004, 61(10): 1741–1770. doi: 10.1002/nme.1130

    [9]

    ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250: 65–88. doi: 10.1016/j.enggeo.2019.01.012

    [10]

    WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89–115. doi: 10.1016/j.ijsolstr.2017.10.022

    [11]

    AZADI H, KHOEI A R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8): 1017–1048. doi: 10.1002/nme.3002

    [12]

    ZHOU X P, FU L, QIAN Q H. A 2D novel non-local lattice bond model for initiation and propagation of cracks in rock materials[J]. Engineering Analysis with Boundary Elements, 2021, 126: 181–199. doi: 10.1016/j.enganabound.2021.03.002

    [13]

    ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. doi: 10.1007/s00603-014-0627-4

    [14]

    JIA Z M, ZHOU X P, BERTO F. Compressive-shear fracture model of the phase-field method coupled with a modified Hoek–Brown criterion[J]. International Journal of Fracture, 2021, 229(2): 161–184. doi: 10.1007/s10704-021-00546-7

    [15]

    XU D D, WU A Q, LI C. A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(6): 1256–1263. doi: 10.1016/j.jrmge.2019.02.007

    [16] 石路杨, 余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学, 2014, 35(1): 263–272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm

    SHI Lu-yang, YU Tian-tang. Analysis of multiple crack growth using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(1): 263–272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm

    [17]

    BARBIERI E, PETRINIC N, MEO M, et al. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2012, 90(2): 177–195. doi: 10.1002/nme.3313

    [18]

    RABCZUK T, BORDAS S, ZI G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics[J]. Computational Mechanics, 2007, 40(3): 473–495. doi: 10.1007/s00466-006-0122-1

    [19]

    YAU J F, WANG S S, CORTEN H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2): 335–341. doi: 10.1115/1.3153665

    [20]

    SHIH C F, ASARO R J. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ⅰ—small scale yielding[J]. Journal of Applied Mechanics, 1988, 55(2): 299–316. doi: 10.1115/1.3173676

    [21]

    ERDOGAN F, SIH G C. Closure to "discussion of 'on the crack extension in plates under plane loading and transverse shear'"[J]. Journal of Basic Engineering, 1963, 85(4): 527. doi: 10.1115/1.3656899

    [22]

    ZHOU X P, JIA Z M, WANG L F. A field-enriched finite element method for brittle fracture in rocks subjected to mixed mode loading[J]. Engineering Analysis with Boundary Elements, 2021, 129: 105–124. doi: 10.1016/j.enganabound.2021.04.023

    [23]

    SUKUMAR N, PRÉVOST J H. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ: computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513–7537. doi: 10.1016/j.ijsolstr.2003.08.002

    [24]

    MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    [25] 刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm

    LIU Feng, ZHENG Hong, LI Chun-guang. The nmm-based efg method and simulation of crack propagation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm

    [26]

    PALUSZNY A, MATTHÄI S K. Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3383–3397.

    [27]

    CIVELEK M B, ERDOGAN F. Crack problems for a rectangular plate and an infinite strip[J]. International Journal of Fracture, 1982, 19(2): 139–159. doi: 10.1007/BF00016570

图(19)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回