• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黏时变渗透分段注浆压力的上、下限解

王军辉, 韩煊

王军辉, 韩煊. 黏时变渗透分段注浆压力的上、下限解[J]. 岩土工程学报, 2023, 45(9): 1782-1789. DOI: 10.11779/CJGE20220582
引用本文: 王军辉, 韩煊. 黏时变渗透分段注浆压力的上、下限解[J]. 岩土工程学报, 2023, 45(9): 1782-1789. DOI: 10.11779/CJGE20220582
WANG Junhui, HAN Xuan. Upper- and lower-bound solutions for sectional penetration grouting pressure under time-dependent viscosity of slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1782-1789. DOI: 10.11779/CJGE20220582
Citation: WANG Junhui, HAN Xuan. Upper- and lower-bound solutions for sectional penetration grouting pressure under time-dependent viscosity of slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1782-1789. DOI: 10.11779/CJGE20220582

黏时变渗透分段注浆压力的上、下限解  English Version

详细信息
    作者简介:

    王军辉(1973—),男,博士,教授级高级工程师,主要从事水文地质与岩土工程方面的科学研究与工程咨询工作。E-mail: wjh1223@sina.com

  • 中图分类号: TU432

Upper- and lower-bound solutions for sectional penetration grouting pressure under time-dependent viscosity of slurry

  • 摘要: 在浆液的黏时变效应下,渗透注浆压力(p)和注浆速率(q)都是随时间t变化的,给注浆工程的设计计算带来困难。首先,考虑到设计的便利,利用定积分原理,提出了p-q双时间变量下对应的分段注浆压力(P)和注浆速率(Q)的工程定义。其次,根据黏时变理论和Darcy定律,建立了p-q双时间变量下的黏时变渗透注浆解析模型(包括物理方程、几何方程和边界条件),揭示了黏时变渗透注浆的复杂数学物理过程,讨论了模型解的存在性与唯一性。再次,利用P-Q的工程定义式和渗透注浆解析模型进行P的理论解研究,充分利用积分不等式的性质,分别得到了P的下限与上限通解,讨论解的科学性与普适性。最后,结合当前实际工程需要,进一步讨论了指数黏时变函数P的上、下限特解(包括球面和柱面两种扩散模式)。
    Abstract: Under the time-dependent viscosity of slurry, the grouting pressure (p) and the grouting rate (q) are both time-dependent, which makes design and calculation more difficult in grouting project. Firstly, the engineering definitions of grouting pressure (P) and grouting rate (Q) for a sectional grouting under the double-time-variable of p-q are introduced by using the defined integral. Secondly, according to the theory of time-dependent viscosity and the Darcy's law, an analytical model for the penetration grouting under time-dependent viscosity of slurry considering the double-time-variable of p-q is established (including physical equation, geometrical equation and boundary condition), with which the complex process of penetration grouting under time-dependent viscosity of slurry is discovered, and its solutions are discussed systematically. Thirdly, the theoretical solutions for the sectional grouting pressure P are deduced based on its engineering definition and the above analytical model, and with the property of integral inequality and the systematic theoretical derivation, the general limit solutions (including upper- and lower-bound solutions) of P are obtained, and their scientificity and universality are discussed. Finally, considering the actual engineering needs, the special upper- and lower-bound solutions of P for the two modes of spherical and cylindrical diffusions under exponential time-dependent viscosity function are further discussed.
  • 图  1   单孔注浆浆液流向截面示意图

    Figure  1.   Section of flow direction of slurry under single hole-grouting

    表  1   球面扩散模式下P的上、下限特解

    Table  1   Special limit solution of P under spherial diffusion mode

    解的
    类型
    解的表达式 符号说明
    下限
    Hsg1=μg0aTexp(aT)μw[exp(aT)1]K{Q4π [1rg1Rs(T)]ne[Rs(T)rg]2[Rs(T)+2rg]6Rs(T)T}+h0 Rs(T)=3QT4πne+r3g
    上限
    Hsg2=μg0Q4π μWTK
    {[exp(aT)1]argT0exp(at)ˉRs(t)dt}
    ˉRs(t)=3Qt4πne+r3g
    下载: 导出CSV

    表  2   柱状扩散模式下P的上、下限特解

    Table  2   Special limit solution of P under cylindrical diffusion mode

    解的类型 解的表达式 符号说明
    下限解 Hcg1=μg0aTexp(aT)2μwK[exp(aT)1]{(Qπ L+neTr2g)lnRc(T)rgne2T[Rc(T)2r2g]} Rc(T)=QTπ Lne+r2g
    上限解 Hcg2=μg0Q2π KLμwT[T0exp(at)lnˉRc(t)dtexp(aT)1alnrg] ˉRc(t)=Qtπ Lne+r2g
    下载: 导出CSV
  • [1] 彭峰, 刘广均. 狮子洋隧道下穿珠江大堤注浆加固技术研究[J]. 铁道工程学报, 2010, 27(7): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007014.htm

    PENG Feng, LIU Guangjun. Research on sleeve-valve-pipe grouting technology for reinforcing the Pearl River Dam underpassed by shiziyang tunnel[J]. Journal of Railway Engineering Society, 2010, 27(7): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007014.htm

    [2] 李辉, 于少辉, 杨朝帅, 等. 富水砂质围岩超前预加固大断面隧道施工变形分析[J]. 现代隧道技术, 2013, 50(4): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201304021.htm

    LI Hui, YU Shaohui, YANG Chaoshuai, et al. Analysis of the deformation induced by the advance pre-reinforcement construction of a large cross-section tunnel in water-rich sandy rock[J]. Modern Tunnelling Technology, 2013, 50(4): 128-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201304021.htm

    [3] 孙连勇, 黄永亮, 尹长凤, 等. 富水砂层浅埋地铁隧道深孔注浆扰动机理研究[J]. 现代隧道技术, 2018, 55(1): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201801027.htm

    SUN Lianyong, HUANG Yongliang, YIN Changfeng, et al. Disturbance mechanism of deep-hole grouting for shallow metro tunnels in water-rich sand layers[J]. Modern Tunnelling Technology, 2018, 55(1): 184-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201801027.htm

    [4] 邝健政, 昝月稳, 王杰, 等. 岩土注浆理论与工程实例[M]. 北京: 科学出版社, 2001.

    KUANG Jianzheng, ZAN Yuewen, WANG Jie, et al. Geotechnical Grouting Theory and Engineering Examples[M]. Beijing: Science Press, 2001. (in Chinese)

    [5]

    HONMA S. A mathematical Model for the Analysis on the Injection and Distribution of Chemical Grout in Soil[R]. Tokai : Tokai University, 1986

    [6] 李术才, 韩伟伟, 张庆松, 等. 地下工程动水注浆速凝浆液黏度时变特性研究[J]. 岩石力学与工程学报, 2013, 32(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301002.htm

    LI Shucai, HAN Weiwei, ZHANG Qingsong, et al. Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301002.htm

    [7] 李术才, 刘人太, 张庆松, 等. 基于黏度时变性的水泥–玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312005.htm

    LI Shucai, LIU Rentai, ZHANG Qingsong, et al. Research on c-s slurry diffusion mechanism with time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2415-2421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312005.htm

    [8] 郑大为, 张彬, 王笑冰. 黏度渐变型浆液渗透注浆灌注均匀砂层计算方法的研究[J]. 岩石力学与工程学报, 2005, 24(增刊1): 5086-5089. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508002012.htm

    ZHENG Dawei, ZHANG Bin, WANG Xiaobing. A study on calculation method of penetration theory for conforming sand layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S1): 5086-5089. (in Chinese https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508002012.htm

    [9] 刘健, 张载松, 韩烨, 等. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J]. 岩土力学, 2015, 36(2): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502011.htm

    LIU Jian, ZHANG Zaisong, HAN Ye, et al. Backfilled grouting diffusion law and model of pressure on segments of shield tunnel considering viscosity variation of cement grout[J]. Rock and Soil Mechanics, 2015, 36(2): 361-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502011.htm

    [10] 雷进生, 刘非, 彭刚, 等. 考虑参数动态变化和相互关联的浆液扩散范围研究[J]. 长江科学院院报, 2016, 33(2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602014.htm

    LEI Jinsheng, LIU Fei, PENG Gang, et al. Diffusion range of grout in consideration of dynamic change and correlation of parameters[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(2): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602014.htm

    [11] 周军霞, 陆劲松, 张玉, 等. 考虑浆液黏时变性渗透注浆理论计算公式[J]. 材料科学与工程学报, 2019, 37(5): 758-762. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201905013.htm

    ZHOU Junxia, LU Jinsong, ZHANG Yu, et al. Calculation formula of permeation grouting considering slurry viscosity variation[J]. Journal of Materials Science and Engineering, 2019, 37(5): 758-762. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201905013.htm

    [12] 叶飞, 苟长飞, 刘燕鹏, 等. 盾构隧道壁后注浆浆液时变半球面扩散模型[J]. 同济大学学报(自然科学版), 2012, 40(12): 1789-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201212009.htm

    YE Fei, GOU Changfei, LIU Yanpeng, et al. Half-spherical surface diffusion model of shield tunnel back-filled grouts[J]. Journal of Tongji University (Natural Science), 2012, 40(12): 1789-1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201212009.htm

    [13] 寇磊, 徐建国, 王博. 考虑有效孔隙比影响的饱和黏性土中注浆渗透机理[J]. 应用数学和力学, 2018, 39(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201801008.htm

    KOU Lei, XU Jianguo, WANG Bo. Research on grouting infiltration mechanism for time-dependent viscous slurry considering effective void ratios in saturated clay[J]. Applied Mathematics and Mechanics, 2018, 39(1): 83-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201801008.htm

    [14] 张民庆, 彭峰. 地下工程注浆技术[M]. 北京: 地质出版社, 2008.

    ZHANG Minqing, PENG Feng. Grouting Technology for Underground Engineering[M]. Beijing: Geological Publishing House, 2008. (in Chinese)

    [15] 张连震, 张庆松, 刘人太, 等. 考虑浆液黏度时空变化的速凝浆液渗透注浆扩散机制研究[J]. 岩土力学, 2017, 38(2): 443-452. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702019.htm

    ZHANG Lianzhen, ZHANG Qingsong, LIU Rentai, et al. Penetration grouting mechanism of quick setting slurry considering spatiotemporal variation of viscosity[J]. Rock and Soil Mechanics, 2017, 38(2): 443-452. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702019.htm

    [16] 邓弘扬, 汪在芹, 魏涛. 基于CW环氧浆液流变性的注浆扩散理论研究[J]. 长江科学院院报, 2016, 33(5): 121-124, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201605025.htm

    DENG Hongyang, WANG Zaiqin, WEI Tao. Grout diffusion theory based on CW epoxy grout's time-varying characteristics of viscosity[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(5): 121-124, 134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201605025.htm

    [17]

    BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier Pub. Co, 1972.

    [18]

    NUTTING P G. The movements of fluids in porous solids[J]. Journal of the Franklin Institute, 1927, 203(2): 313-324.

    [19]

    NUTTING P G. Physical analysis of oil sands[J]. AAPG Bulletin, 1930, 14: 1337-1349.

  • 期刊类型引用(1)

    1. 许建堂. 不同因素对堆石坝地基防渗墙应力应变影响分析. 水利科技与经济. 2023(06): 11-15 . 百度学术

    其他类型引用(0)

图(1)  /  表(2)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  35
  • PDF下载量:  100
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-05-07
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回