• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钢纤维改良土的分层冻胀试验研究

石荣剑, 黄丰, 岳丰田, 姬嘉骏, 李逸辰

石荣剑, 黄丰, 岳丰田, 姬嘉骏, 李逸辰. 钢纤维改良土的分层冻胀试验研究[J]. 岩土工程学报, 2023, 45(7): 1430-1437. DOI: 10.11779/CJGE20220559
引用本文: 石荣剑, 黄丰, 岳丰田, 姬嘉骏, 李逸辰. 钢纤维改良土的分层冻胀试验研究[J]. 岩土工程学报, 2023, 45(7): 1430-1437. DOI: 10.11779/CJGE20220559
SHI Rongjian, HUANG Feng, YUE Fengtian, JI Jiajun, LI Yichen. Experimental study on delamination frost heave of steel fiber-improved soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1430-1437. DOI: 10.11779/CJGE20220559
Citation: SHI Rongjian, HUANG Feng, YUE Fengtian, JI Jiajun, LI Yichen. Experimental study on delamination frost heave of steel fiber-improved soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1430-1437. DOI: 10.11779/CJGE20220559

钢纤维改良土的分层冻胀试验研究  English Version

基金项目: 

国家高技术研究发展计划(“863”计划)项目 2012AA06A401

详细信息
    作者简介:

    石荣剑(1975—),男,博士,副教授,主要从事城市地下工程方面的教学和科研工作。E-mail:rjshicumt@163.com

  • 中图分类号: TU91

Experimental study on delamination frost heave of steel fiber-improved soil

  • 摘要: 水分迁移引起的分凝冻胀是土体冻胀变形的主要来源,而掌握冻结过程中水分迁移规律是揭示土体冻胀机理的关键。为探究钢纤维改良土抑制冻胀机理,利用改进的冻胀装置设计进行了独立补水条件下的分层冻胀试验,获得如下结论:冻结过程中试样下部的冻胀作用会引起上部未冻土的排水,冻结过程中0.5%掺量试样的中层与上层土体排水量分别占相应土体水分迁入量的1.22%和3.45%;掺入钢纤维可明显减小试样的补水量,相比于未掺钢纤维试样,0.5%掺量试样的中层和上层补水量可分别减小10.19%,17.87%;钢纤维掺量及长度的增加不仅可促进试样中水分排出,而且会抑制土体中冰透镜体生长,降低外部水分迁入量,从而减小试样冻胀率。研究结果表明,试样中掺入钢纤维后引起的排水效应及限制冰透镜体的生长过程,是钢纤维改良土抑制冻胀的主要原因。
    Abstract: The segregation frost heave caused by water migration is the main source of frost heave, and the water migration law is the key factor to reveal the mechanism of frost heave of soils in the freezing process. In order to explore the mechanism of inhibiting the frost heave of steel fiber-improved soil, the one-dimensional frost heave tests on the steel fiber-improved soil under the layered independent water supplement condition are carried out by using the improved frost heave devices. The following conclusions are obtained. Firstly, the frost heave in the lower part of the sample will cause the drainage of the unfrozen soil in the upper part, and the amount of water discharged from the middle and upper soil layers of the sample with steel fiber content of 0.5% during the freezing process accounts for 1.22% and 3.45% of the corresponding water inflow. Secondly, the steel fiber added in the soils can obviously reduce the water supply in the freezing process. Compared with the sample without steel fiber, the water replenishment in the middle and upper layers of the sample with steel fiber content of 0.5% decreases by 10.19% and 17.87%. Thirdly, the increase of content and length of the steel fiber can promote the water discharge from the sample and inhibit the growth of ice lens in the soils, which can reduce the amount of external water intake and reduce the frost heave deformation. The research results show that the drainage effects and the restriction of ice lens growth caused by the steel fiber are the main reasons for the inhibition of frost heave in the steel fiber-improved soil.
  • 如果从1925年Terzaghi发表《土力学》开始算起,土力学的发展已近百年了,但今天应用于指导土工工程设计的方法仍然还是一种半理论半经验的方法。以最基本的地基沉降计算为例,目前比较权威的《建筑地基基础设计规范》提供的地基沉降计算公式[1],是采用一个变化范围较大的经验系数(0.2~1.4)对理论计算值进行修正而得到的,说明目前还是较难准确计算地基的沉降。同样,对地基的允许承载力的合理确定也还是没有很科学解决的,例如规范采用允许地基塑性区深度为基础宽度的1/4作为允许承载力或地基承载力特征值,即P1/4,也是一种半理论半经验的结果。即使采用认为最可靠的现场载荷板试验,由于与实际基础的尺寸不同,用载荷板试验确定的承载力特征值也是半理论半经验的。

    在当今现代科技日新月异的情况下,土力学该如何发展,土力学理论工程应用的瓶颈在哪里,值得回顾和思考。

    笔者认为:从土的变形特性的角度,土力学的发展可以分为四个阶段。

    第一阶段:ep曲线

    有效应力原理是土力学的基石,主要是研究饱和土中土骨架与土中水的应力转换,认为控制土体强度的主要是土骨架的有效应力,而对于土的沉降,也认为主要是土中水的排出引起的压缩固结沉降,因而把地基的沉降主要看作一维压缩沉降,从而研究孔隙比e与压力p的关系,通过一维压缩试验确定ep曲线,主要是用于计算土的压缩沉降,这个观点一直影响和沿用至今,如规范中的沉降计算主要还是用一维压缩试验的ep曲线计算沉降,然后通过经验系数修正计算值。

    第二阶段:epq曲面

    单向压缩试验时得到的ep曲线是土体越压缩越密的,土不会发生破坏,实际上土体在荷载的作用下,随着荷载的增大,最后会达到破坏状态,一维压缩试验不能全面反映土的实际受力变形状态。剑桥学派通过土的三轴试验,建立了epq曲面,考虑了剪应力对孔隙比的影响和土的破坏过程,更全面地认识土的孔隙比e与应力状态的关系,得到所谓的Roscoe面,并发现土体破坏时孔隙比与pq的关系,即临界状态线,可以更全面地认识孔隙比e与应力状态的关系,并提出建立了临界状态的土力学理论和最早的土体本构模型——剑桥弹塑性模型,使土力学进入到更好描述土的强度与变形性状的本构模型研究为主的现代土力学阶段。

    第三阶段:土的压硬性和剪软性

    临界状态理论虽然建立了epq的三维空间面,但还是关注土的压缩变形e,而真正影响土的强度和变形的应该是剪切变形,而不是孔隙比变化引起的沉降变形。在临界状态理论基础上建立的剑桥模型在表述剪切变形时,通过能量函数的假设获得剪切塑性变形与塑性体积变形关系,而能量函数并不能直接测定,假设不同的能量函数会得到不同的结果,感觉不够踏实。为此,后来变成研究剪胀方程,即研究剪应变与体应变的关系方程。

    Duncan-Chang模型[2]通过常规三轴试验描述了土的压硬性与剪软性,其依据的常规三轴试验曲线如图 1所示,表现为随围压σ3的增加土变硬,即σ3越大,相同的剪应力q=σ1σ3对应的应变越小,即为土的压硬性,而对于同一个σ3的曲线随着剪应力q=σ1σ3的增大,应变非线性变大,即土变软,直至破坏。这是最直观地反映土体压硬性和剪软性的结果,是土与金属材料变形特性的最大不同。该模型在假设试验曲线可用双曲线表达基础上,获得了土体切线模量的表达式为

    Et=(1Rfσ1σ3(σ1σ3)f)2K(σ3pa)n,
    (1)
    (σ1σ3)f=2ccosφ+2σ3sinφ1sinφ
    (2)
    图  1  土样常规三轴试验曲线
    Figure  1.  Curves of soils by conventional triaxial test

    图 1的切线,地基的沉降变形计算用Et参数,较好地考虑了土体的压硬性和剪软性,直观地反映了土的剪切变形特点。图 1的试验曲线由土样的常规三轴试验得到,结果直观可靠,是土的力学特性认识的一个重要进步。

    第四阶段:原位土力学

    前面对于土的力学特性的认识都是基于土样室内试验而获得的,或重塑土试验的结果。实践中发现,由于土是一种天然形成的材料,更有一些由岩石风化而成的土,如残积土,具有较强的结构性,土样经取样应力释放之后,结构性遭到破坏,与现场原位土的性质已不同。同样有一定胶结的砂土,取样扰动后结构发生了破坏,室内土样与现场土已发生了变化,如果用扰动过的土样进行试验得到的力学特性指标是不能真实反映现场原位土的力学特性的,用这样的土样所得到的试验指标进行地基沉降变形等的计算误差很大,前面提到的《建筑地基基础设计规范》沉降计算的修正经验系数为0.2~1.4,最小与最大相差7倍,最小经验系数为0.2,就是考虑用室内扰动土样试验得到的变形刚度比现场原位土的变形刚度要小,用于计算所得的沉降偏大,因而要乘以0.2的系数进行修正。但这种经验系数法修正也不是长久之计,改进的方法是采用现场原位试验的测试方法,来测定现场原位土的力学指标,如土的变形模量参数,用于计算,以提高计算的准确性。例如,笔者提出用现场压板试验确定土的初始切线模量Et0和强度指标cφ。假设图 2的压板载荷试验曲线可以用双曲线方程(3)来表示[3-5],则拟合试验结果可以得到双曲线方程的两个参数ab,由这两个参数可以得到地基的极限承载力pu和土的初始切线模量Et0

    p=sa+bs,
    (3)
    b=1pu,a=1k0=D(1ν2)ωEt0,
    (4)
    图  2  现场压板载荷试验曲线
    Figure  2.  In-site plate load test curves

    式中,D为试验压板的直径,ν为土的泊松比,ω为压板的形状系数。

    如式(4)得到地基的极限承载力pu和土的初始切线模量Et0,由地基极限承载力pu可以得到土的强度指标cφ,则不同应力水平下土的切线模量方程可表示为

    Et=(1Rfσ1σ3(σ1σ3)f)2Et0
    (5)

    而式(3)中土的3个力学参数:Et0cφ就是通过现场原位试验直接得到的,能更好地反映原位土的力学特性。这样,用式(5)的变形参数计算地基的沉降会获得更符合实际的结果。式(5)反映了土的压硬性和剪软性。

    图 3所示为利用切线模量方程式(5),采用数值方法计算得到的压板载荷试验的结果,计算曲线与试验曲线比较接近[5-6],比利用理想弹塑性模型得到的曲线更接近试验曲线。

    图  3  压板载荷试验计算比较
    Figure  3.  Comparison between calculated results and those of plate load tests

    因此,鉴于土质材料的天然特殊性,为更好掌握天然土的力学特性,应大力发展原位试验技术,并发展与之相关的理论研究[6-7],发展基于原位试验的土力学理论,即原位土力学,使理论更符合实际,应是更好解决土工工程的途径。这应该是土力学发展的第四个阶段,也是更值得期待的阶段,可以更有效地提高土力学计算的准确性,提高工程设计水平。

  • 图  1   分层补水的测试装置

    Figure  1.   Delamination hydrating test devices

    图  2   冻胀试验过程图

    Figure  2.   Process of frost heave tests

    图  3   试样内温度的变化曲线

    Figure  3.   Curves of temperature variation

    图  4   不同分层形式下试样冻胀的变化过程

    Figure  4.   Variation of frost heave under different delamination forms

    图  5   不同分层形式下试样补水量的变化过程

    Figure  5.   Variation of water supplement under different delamination forms

    图  6   不同钢纤维掺量试样的冻胀变化过程

    Figure  6.   Frost heave variation of samples with different contents of steel fiber

    图  7   试样的补水量变化曲线

    Figure  7.   Variation of water supplement amount in samples

    图  8   不同分段形式下补水量与冻胀率的变化曲线

    Figure  8.   Variation of frost heave rate and water supplement

    图  9   试样累计补水量与冻结锋面推进位置间的变化曲线

    Figure  9.   Variation of water replenishment amount of samples with advancing position of freezing front

    图  10   钢纤维掺入前后各层补水量的变化曲线

    Figure  10.   Variation of water replenishment amount of each layer before and after incorporation of steel fiber

    图  11   不同钢纤维参数下各层补水量的变化曲线

    Figure  11.   Varation of water replenishment amount of each layer under different parameters of steel fiber

  • [1] 鲁先龙, 陈湘生, 陈曦. 人工地层冻结法风险预控[J]. 岩土工程学报, 2021, 43(12): 2308-2314. doi: 10.11779/CJGE202112018

    LU Xianlong, CHEN Xiangsheng, CHEN Xi. Risk prevention and control of artificial ground freezing (AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. (in Chinese) doi: 10.11779/CJGE202112018

    [2] 唐益群, 洪军, 杨坪, 等. 人工冻结作用下淤泥质黏土冻胀特性试验研究[J]. 岩土工程学报, 2009, 31(5): 772-776. doi: 10.3321/j.issn:1000-4548.2009.05.021

    TANG Yiqun, HONG Jun, YANG Ping, et al. Frost-heaving behaviors of mucky clay by artificial horizontal freezing method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 772-776. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.021

    [3] 刘振亚, 刘建坤, 李旭, 等. 非饱和粉质黏土冻结温度和冻结变形特性试验研究[J]. 岩土工程学报, 2017, 39(8): 1381-1387. doi: 10.11779/CJGE201708004

    LIU Zhenya, LIU Jiankun, LI Xu et al. Experimental study on freezing point and deformation characteristics of unsaturated silty clay subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1381-1387. (in Chinese) doi: 10.11779/CJGE201708004

    [4] 陈轮, 郭瑞平, 李广信, 等. 用土工加筋防治土冻胀的研究[J]. 水利学报, 1996, 27(3): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.012.htm

    CHEN Lun, GUO Ruiping, LI Guangxin, et al. Study on prevention of frost heave with reinforcement[J]. Journal of Hydraulic Engineering, 1996, 27(3): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.012.htm

    [5]

    LIU X Q, LIU J K, TIAN Y L, et al. A frost heaving mitigation method with the rubber-asphalt-fiber mixture cylinder[J]. Cold Regions Science and Technology, 2020, 169: 1-8.

    [6]

    SHEN Y P, LIU X, ZUO R F, et al. Effect of frost heave on a silt column filled with rubber-asphalt-fiber[J]. Cold Regions Science and Technology, 2020, 174: 102991. doi: 10.1016/j.coldregions.2020.102991

    [7] 石荣剑, 黄丰, 岳丰田, 等. 一种纤维改良地层抑制冻胀变形的方法: CN112726684A[P]. 2021-04-30.

    SHI Rongjian, HUANG Feng, YUE Fengtian, et al. Method for Inhibiting Frost Heaving Deformation of Fiber Improved Stratum: CN112726684A[P]. 2021-04-30. (in Chinese)

    [8] 刘欣, 杨平, 王怀东, 等. 冻结MJS水泥土强度与冻融特性研究[J]. 铁道科学与工程学报, 2020, 17(12): 3088-3096. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202012013.htm

    LIU Xin, YANG Ping, WANG Huaidong, et al. Study on the strength and freeze-thaw characteristics of frozen MJS cement soil[J]. Journal of Railway Science and Engineering, 2020, 17(12): 3088-3096. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202012013.htm

    [9]

    EVERETT D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society, 1961, 57(0): 1541-1551.

    [10]

    MILLER R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393: 1–11.

    [11]

    HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323. doi: 10.1029/WR009i005p01314

    [12] 何敏, 李宁, 刘乃飞. 饱和冻土水热力耦合模型解析及验证[J]. 岩土工程学报, 2012, 34(10): 1858-1865. http://www.cgejournal.com/cn/article/id/14872

    HE Min, LI Ning, LIU Naifei. Analysis and validation of coupled heat-moisture-deformation model for saturated frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1858-1865. (in Chinese) http://www.cgejournal.com/cn/article/id/14872

    [13] 何敏, 冯孝鹏, 李宁, 等. 饱和正冻土水热力耦合模型的改进[J]. 岩土工程学报, 2018, 40(7): 1212-1220. doi: 10.11779/CJGE201807007

    HE Min, FENG Xiaopeng, LI Ning, et al. Improvement of coupled thermo-hydro-mechanical model for saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1212-1220. (in Chinese) doi: 10.11779/CJGE201807007

    [14] 白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增刊2): 131-136. doi: 10.11779/CJGE2015S2026

    BAI Qingbo, LI Xu, TIAN Yahu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. (in Chinese) doi: 10.11779/CJGE2015S2026

    [15] 曾桂军, 张明义, 李振萍, 等. 饱和正冻土水分迁移及冻胀模型研究[J]. 岩土力学, 2015, 36(4): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504027.htm

    ZENG Guijun, ZHANG Mingyi, LI Zhenping, et al. Study of moisture migration and frost heave model of freezing saturated soil[J]. Rock and Soil Mechanics, 2015, 36(4): 1085-1092. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504027.htm

    [16] 魏厚振, 周家作, 韦昌富, 等. 饱和粉土冻结过程中的水分迁移试验研究[J]. 岩土力学, 2016, 37(9): 2547-2552, 2560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609015.htm

    WEI Houzhen, ZHOU Jiazuo, WEI Changfu, et al. Experimental study of water migration in saturated freezing silty soil[J]. Rock and Soil Mechanics, 2016, 37(9): 2547-2552, 2560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609015.htm

    [17] 赵刚, 陶夏新, 刘兵. 原状土冻融过程中水分迁移试验研究[J]. 岩土工程学报, 2009, 31(12): 1952-1957. http://www.cgejournal.com/cn/article/id/8415

    ZHAO Gang, TAO Xiaxin, LIU Bing. Experimental study on water migration in undisturbed soil during freezing and thawing process[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1952-1957. (in Chinese) http://www.cgejournal.com/cn/article/id/8415

    [18] 薛珂, 温智, 张明礼, 等. 土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报, 2017, 33(10): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201710023.htm

    XUE Ke, WEN Zhi, ZHANG Mingli, et al. Relationship between matric potential, moisture migration and frost heave in freezing process of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 176-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201710023.htm

    [19] 石荣剑, 陈斌, 岳丰田, 等. 盾构地中对接冻结加固模型试验(Ⅱ): 冻结过程中地层的冻胀效应研究[J]. 岩土力学, 2017, 38(9): 2639-2646. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709024.htm

    SHI Rongjian, CHEN Bin, YUE Fengtian, et al. Model test on freezing reinforcement for shield junction in soft stratum (Part 2): frost heave effect of soft stratum during freezing process[J]. Rock and Soil Mechanics, 2017, 38(9): 2639-2646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709024.htm

    [20] 杨平, 陈瑾, 张尚贵, 等. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234. doi: 10.11779/CJGE201712011

    YANG Ping, CHEN Jin, ZHANG Shanggui, et al. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. (in Chinese) doi: 10.11779/CJGE201712011

  • 期刊类型引用(10)

    1. 张盛行,汤雷,朱春光,石蓝星,明攀. 瞬变电磁探测土质堤坝渗漏病害的正演模拟与工程应用. 水利水电技术(中英文). 2025(S1): 392-397 . 百度学术
    2. 施晓萍,周柏兵,郭庆鑫,李家群. 机载激光雷达在堤防隐患巡查试验中的应用. 水利发展研究. 2024(01): 86-93 . 百度学术
    3. 黄曙光. 英德庄洲防洪堤水毁应急抢险修复策略. 云南水力发电. 2024(03): 99-102 . 百度学术
    4. 涂建伟,蒋德成,崔家仲,何孟芸,贾刚. 面向岸堤坍塌全过程的应急防护措施与装置. 人民长江. 2024(04): 200-206 . 百度学术
    5. 薛凯喜,李明吉,曹凯,胡艳香. 鄱阳湖圩堤管涌险情分析与防治措施. 河北工程大学学报(自然科学版). 2024(02): 95-104 . 百度学术
    6. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
    7. 陈昱行,高至飞,胡朝鹏,宋国策. 基于无人机多模态数据的铁路防洪隐患排查系统研发. 铁道勘察. 2024(05): 156-162 . 百度学术
    8. 蒋水华,陈颖霞,熊威,李彧玮,常志璐,李锦辉,李文欢. 堤防工程险情风险评估与管控研究进展. 人民珠江. 2024(11): 1-13 . 百度学术
    9. 刘阳,涂善波,李亚楠. 双线盾构隧道穿越影响下的黄河堤防沉降监测研究. 陕西水利. 2023(10): 135-138 . 百度学术
    10. 涂善波,刘阳. 基于多源监测技术的穿黄隧道堤防安全影响评价. 水科学与工程技术. 2023(05): 73-76 . 百度学术

    其他类型引用(3)

图(11)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  47
  • PDF下载量:  94
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-05-03
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回