• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

某低厨余填埋场垃圾物理力学特性演化规律

陈宏信, 吕东江, 冯世进, 张晓磊, 吴少杰

陈宏信, 吕东江, 冯世进, 张晓磊, 吴少杰. 某低厨余填埋场垃圾物理力学特性演化规律[J]. 岩土工程学报, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551
引用本文: 陈宏信, 吕东江, 冯世进, 张晓磊, 吴少杰. 某低厨余填埋场垃圾物理力学特性演化规律[J]. 岩土工程学报, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551
CHEN Hongxin, LÜ Dongjinag, FENG Shijin, ZHANG Xiaolei, WU Shaojie. Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551
Citation: CHEN Hongxin, LÜ Dongjinag, FENG Shijin, ZHANG Xiaolei, WU Shaojie. Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551

某低厨余填埋场垃圾物理力学特性演化规律  English Version

基金项目: 

国家重点研发计划项目 2020YFC1808103

国家自然科学基金项目 41931289

国家自然科学基金项目 42077250

国家自然科学基金项目 42277148

详细信息
    作者简介:

    陈宏信(1987—),男,博士,副教授,主要从事环境岩土方向的教学和科研工作。E-mail: chenhongxin@tongji.edu.cn

    通讯作者:

    冯世进, E-mail: fsjgly@tongji.edu.cn

  • 中图分类号: TU431

Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content

  • 摘要: 垃圾分类处理将导致中国填埋场中厨余垃圾占比显著下降,对填埋场的长期安全运营提出了新的要求。对中国某低厨余城市生活垃圾(MSW)填埋场进行了现场抽水、电阻率测试及室内垃圾组分、质量含水率、剪切强度等测试,分析了其物理力学特性变化。结果表明经过两年抽水后垃圾组分变化不大,但垃圾特性分布更加离散;低厨余垃圾受历史填埋垃圾影响,含水率为86%~161%,经过抽水后降低至42%~116%;抽水后填埋场整体水位下降但在10~15 m深度出现了局部的高含水区域;填埋场垃圾黏聚力及内摩擦角分布范围分别为0~20 kPa及15°~30°,黏聚力及内摩擦角变化范围较大,且黏聚力低于国内一般高厨余垃圾填埋场,抽水后垃圾的剪切强度总体下降但剪切硬化现象更加明显。
    Abstract: The classified treatment of the municipal solid waste (MSW) will lead to a significant decline in the proportion of kitchen waste in landfills in China, which puts forward new requirements for the long-term safe operation of landfills. To evaluate the evolution of the physical and mechanical properties of waste in low kitchen waste landfills, the in-situ pumping and resistivity tests, and the laboratory tests on waste components, water content and shear strength of an MSW landfill with low kitchen waste content in China are carried out. The major conclusions are as follows: (1) The waste components only slightly change after two years of pumping, but the properties of the MSW become more scattering. (2) The water content is at a high level of 86%~161% which is affected by the landfilling history and location, and the range decreases to 42%~116% after pumping. The overall leachate level declines, but there is a local area with a high water content at the depth of 10~15 m, and the local leachate accumulation may be due to component dislocation and migration caused by pumping. (3) The cohesion and internal friction angle vary widely, and their ranges are 0~20 kPa and 15°~30°, respectively. The cohesion is overall lower than that of the domestic traditional landfill with a high kitchen waste content. The shear strength of the MSW after pumping is generally reduced, but the shear hardening phenomenon is more obvious.
  • 图  1   填埋场平面布置图

    Figure  1.   Layout of landfill

    图  2   抽水井布置及现场测试安排

    Figure  2.   Layout of vertical wells and field test plan

    图  3   测试断面反演过程示意图

    Figure  3.   Schematic diagram of inversion process of test section

    图  4   垃圾重度沿深度变化

    Figure  4.   Variation of unit weight of MSW with depth

    图  5   国内外不同填埋场的垃圾组分

    Figure  5.   MSW components in different landfills

    图  6   A测线电阻率测试结果

    Figure  6.   Resistivity test results of line A

    图  7   B测线电阻率测试结果

    Figure  7.   Resistivity test results of line B

    图  8   垃圾含水率在抽水前后的对比

    Figure  8.   Comparison of water contents of MSW before and after pumping

    图  9   国内外填埋场含水率对比

    Figure  9.   Comparison of water contents of MSW in different landfills

    图  10   垃圾试样的剪切应力-位移曲线

    Figure  10.   Shear stress-displacement curves of MSW

    图  11   剪切强度参数沿深度变化

    Figure  11.   Variation of shear strength parameters with depth

    图  12   垃圾试样的剪切强度包线

    Figure  12.   Shear strength envelopes of MSW

    图  13   国内外垃圾剪切强度对比

    Figure  13.   Comparison of shear strength parameters of MSW

    表  1   垃圾取样信息

    Table  1   Sampling information of MSW

    钻孔 Ys/年 Ns/个 dp/m- ys/a
    A1 2019 5 2.5-0.5,7.5-0.5,12.5-2,17.5-2,22.5-4
    A2 2019 5 2.5-0.5,7.5-0.5,12.5-2,17.5-2,22.5-4
    B1 2021 4 2.75-2.5,7.25-2.5,11.75-4,16.25-4
    B2 2021 4 2.75-2.5,7.25-2.5,11.75-4,16.25-4
    注:Ys为取样年份;Ns为取样个数;dp为取样深度;ys为龄期。
    下载: 导出CSV

    表  2   垃圾室内直剪试验方案

    Table  2   Schemes for direct shear tests on MSW

    编号 Ys/年 Np/kPa dp/m ys/a γ/(kN·m-3) w/%
    A1-1 2019 100,200,400 2.5 0.5 6.2 90.0
    A1-2 7.5 0.5 6.6 85.5
    A1-3 12.5 2 8.8 161.2
    A1-4 17.5 2 9.6 100.5
    A1-5 22.5 4 11.2 91.3
    A2-1 2.5 0.5 7.6 85.6
    A2-2 7.5 0.5 7.8 91.3
    A2-3 12.5 2 9.3 150.8
    A2-4 17.5 2 8.4 124.5
    A2-5 22.5 4 10.8 90.1
    B1-1 2021 100,200,400 2.75 2.5 9.4 62.3
    B1-2 7.25 2.5 7.8 115.5
    B1-3 11.75 4 7.0 89.0
    B1-4 16.25 4 12.2 89.3
    B2-1 2.75 2.5 6.5 60.2
    B2-2 7.25 2.5 9.6 67.9
    B2-3 11.75 4 6.7 57.2
    B2-4 16.25 4 7.8 42.3
    注:Np为正应力。
    下载: 导出CSV
  • [1] 魏海云, 詹良通, 陈云敏, 等. 城市生活垃圾持水曲线的试验研究[J]. 岩土工程学报, 2007, 29(5): 712-716. http://www.cgejournal.com/cn/article/id/12489

    WEI Haiyun, ZHAN Liangtong, CHEN Yunmin, et al. Experimental study on soil water characteristic curve of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 712-716. (in Chinese) http://www.cgejournal.com/cn/article/id/12489

    [2]

    FENG S J, CHEN Z W, CHEN H X, et al. Slope stability of landfills considering leachate recirculation using vertical wells[J]. Engineering Geology, 2018, 241: 76-85. doi: 10.1016/j.enggeo.2018.05.013

    [3] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Y. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001

    [4] 柯瀚, 胡杰, 吴小雯, 等. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. doi: 10.11779/CJGE201805002

    KE Han, HU Jie, WU Xiaowen, et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. (in Chinese) doi: 10.11779/CJGE201805002

    [5]

    FENG S J, BAI Z B, CAO B Y, et al. The use of electrical resistivity tomography and borehole to characterize leachate distribution in Laogang landfill, China[J]. Environmental Science and Pollution Research, 2017, 24(25): 20811-20817. doi: 10.1007/s11356-017-9853-0

    [6] 涂帆, 钱学德. 中美垃圾填埋场垃圾土的重度、含水率和相对密度[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3075-3081.

    TU Fan, QIAN Xuede. Unit weight, water content and specific gravity of municipal solid waste in China and United States[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3075-3081. (in Chinese)

    [7] 孙春光, 冯银均, 骆振中, 等. 基于简化毕肖普法对生活垃圾土堆体边坡稳定性影响因素的影响度分析研究[J]. 环境卫生工程, 2020, 28(2): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWS202002017.htm

    SUN Chunguang, FENG Yinjun, LUO Zhenzhong, et al. Influence degree analytical investigation on influence factors of slope stability of MSW mound based on simplified bishop method[J]. Environmental Sanitation Engineering, 2020, 28(2): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJWS202002017.htm

    [8] 陈云敏, 林伟岸, 詹良通, 等. 城市生活垃圾抗剪强度与填埋龄期关系的试验研究[J]. 土木工程学报, 2009 (3): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903024.htm

    CHEN Yunmin, LIN Weian, ZHAN Liangtong, et al. A study on the relationship between the shear strength of municipal solid waste and the fill age[J]. China Civil Engineering Journal, 2009 (3): 111-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903024.htm

    [9]

    FENG S J, GAO K W, CHEN Y X, et al. Geotechnical properties of municipal solid waste at Laogang Landfill, China[J]. Waste Management, 2017, 63: 354-365. doi: 10.1016/j.wasman.2016.09.016

    [10] 孙秀丽. 城市固体废弃物变形及强度特性研究[D]. 大连: 大连理工大学, 2007.

    SUN Xiuli. Characterization of Deformation and Strength for Municipal Solid Waste[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)

    [11] 赵阳. 城市固体废弃物动力特性试验研究[D]. 大连: 大连理工大学, 2010.

    ZHAO Yang. Experimental Study on the Dynamic Behavior of Municipal Solid Waste[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)

    [12] 生活垃圾卫生填埋场岩土工程技术规范: CJJ 176—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Technical Code for Geotechnical Engineering of Municipal Solid Waste Sanitary Landfill: CJJ 176—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    [13] 张季如, 陈超敏. 城市生活垃圾抗剪强度参数的测试与分析[J]. 岩石力学与工程学报, 2003, 22(1): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301020.htm

    ZHANG Jiru, CHEN Chaomin. Measurement and analysis on shear strength parameters of municipal solid waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 110-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301020.htm

    [14]

    RAMAIAH B, RAMANA G, BANSAL B. Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 340-357.

    [15]

    STARK T D, HUVAJ-SARIHAN N, LI G C. Shear strength of municipal solid waste for stability analyses[J]. Environmental Geology, 2009, 57(8): 1911-1923.

    [16]

    Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions: ASTM D3080/ D3080M—11[S]. 2011.

    [17] 朱向荣, 王朝晖, 方鹏飞. 杭州天子岭垃圾填埋场扩容可行性研究[J]. 岩土工程学报, 2002, 24(3): 281-285. http://www.cgejournal.com/cn/article/id/10951

    Zhu Xiangrong, WANG Chaohui, FANG Pengfei. Study on feasibility of enlarging capacity in Tianziling waste landfill[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 281-285. (in Chinese) http://www.cgejournal.com/cn/article/id/10951

    [18]

    GOMES C, ERNESTO A, LOPES M L, et al. Sanitary landfill of Santo Tirso: municipal waste physical, chemical and mechanical properties[C]// Proc 4th Int Congress on Environmental Geotechnics, Rio de Janeiro, Brazil. 2002: 255-261.

    [19]

    MACHADO S L, Karimpour-Fard M, SHARIATMADARI N, et al. Evaluation of the geotechnical properties of MSW in two Brazilian landfills[J]. Waste Management, 2010, 30(12): 2579-2591.

    [20]

    CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86-95.

    [21]

    ZHANG W, YUAN S. Characterizing preferential flow in landfilled municipal solid waste[J]. Waste Management, 2019, 84: 20-28.

    [22]

    LANDVA A, KNOWLES G D. Geotechnics of waste fills: theory and practice[M]. Philadephia PA: ASTM, 1990.

    [23]

    REDDY K R, HETTIARACHCHI H, PARAKALLA N S, et al. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA[J]. Waste Management, 2009, 29(2): 952-959.

    [24]

    BAREITHER C A, BENSON C H, EDIL T B. Effects of waste composition and decomposition on the shear strength of municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10): 1161-1174.

    [25]

    HOSSAIN M S, HAQUE M A. The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills[J]. Waste Management, 2008, 29(5): 1568-1576.

    [26]

    HARRIS J M, SHAFER A L, DEGROFF W, et al. Shear strength of degraded reconsitituted municipal solid waste[J]. Geotechnical Testing Journal, 2005, 29(2): 141-148. .

    [27]

    ZEKKOS D, ATHANASOPOULOS G A, BRAY J D, et al. Large-scale direct shear testing of municipal solid waste[J]. Waste Management, 2010, 30(8/9): 1544-1555.

    [28]

    GMOES C, LOPES M L, OLIVEIRA P J V. Municipal solid waste shear strength parameters defined through laboratorial and in situ tests[J]. Journal of the Air & Waste Management Association, 2013, 63(11): 1352-1368.

    [29]

    SINGHMK SINGH M K, SHARMAJS SHARMA J S, FLEMINGIR FLEMING I R. Shear strength testing of intact and recompacted samples of municipal solid waste[J]. Canadian Geotechnical Journal, 2009, 46(10): 1133-1145.

    [30]

    MIYAMOTO S, YASUFUKU N, ISHIKURA R, et al. In-situ shearing response and shear strength of various solid waste ground focused on fibrous materials composition[C]// Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, Cambridge, U K. 2014: 1357-1362.

    [31]

    ABREU A, VILAR O. Influence of composition and degradation on the shear strength of municipal solid waste[J]. Waste Management, 2017, 68: 263-274.

    [32] 施建勇, 朱俊高, 刘荣, 等. 垃圾土强度特性试验与双线强度包线研究[J]. 岩土工程学报, 2010, 32(10): 1499-1504. http://www.cgejournal.com/cn/article/id/8369

    SHI Jianyong, ZHU Jungao, LIU Rong, et al. Tests on shear strength behavior and envelop of double lines of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1499-1504. (in Chinese) http://www.cgejournal.com/cn/article/id/8369

    [33] 张振营, 严立俊, 吴大志, 等. 新鲜生活垃圾抗剪强度参数变化规律研究[J]. 岩土工程学报, 2015, 37(3): 432-439. doi: 10.11779/CJGE201503006

    ZHANG Zhenying, YAN Lijun, WU Dazhi, et al. Experimental study on shear strength parameters of fresh municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 432-439. (in Chinese) doi: 10.11779/CJGE201503006

  • 期刊类型引用(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术

    其他类型引用(13)

图(13)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-05-04
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回