Mechanical properties of airbag frame ground beams for slope support
-
摘要: 针对地震、崩塌等自然灾害频发而导致的边坡失稳问题,提出了可快速应对抢险救灾工作的气囊式锚杆框架地梁新型结构,并阐述了该新型结构的工作机理。分析气囊框架地梁受荷时玻璃钢与气囊的受力特性,给出了气囊框架地梁承载力计算方法;结合气压传动和双层弹性地基梁理论,建立了气囊框架地梁-锚杆-土体协调变形的计算模型,给出了气囊式框架地梁在边坡支护施工阶段与工作阶段的力学效应计算方法。结果表明:①气囊式框架梁结构承载力主要由框架梁板厚、板材强度、气囊内压和高度决定,增加框架板厚、板材强度、气囊内压和高度可以提高结构承载力;②气囊式框架梁支护边坡存在施工和工作两个阶段,工作阶段位于坡脚处的框架梁剪力和弯矩出现较大的上升,设计时应作为最不利因素着重考虑;③支护设计时还应综合考虑支护效果、结构承载力和经济性给出设计方案,确保结构在实际抢险救灾中的可靠性、时效性和经济性。研究成果可在边坡快速支护中为新型结构的设计应用提供理论依据和指导。Abstract: In view of the slope instability caused by frequent natural disasters such as earthquakes and collapses, a new type of ground beam structure with airbag anchor frame which can quickly respond to rescue and relief work is proposed, and the working mechanism of the new structure is described. The stress characteristics of FRP and airbag are analyzed when the ground beam of airbag frame is loaded, and the method for the bearing capacity of the ground beam of airbag frame is given. Combined with the theory of pneumatic transmission and double-layer elastic foundation beam, the model for calculating the coordinated deformations of the airbag frame ground beams, bolts and soils is established, and the relevant method for the mechanical effects of the airbag frame ground beams at the construction stage and working stage of slope support is given. The results show that: (1) The bearing capacity of the airbag frame beam structure is mainly determined by the thickness of frame beam, the strength of plate, and the internal pressure and height of the airbag. Increasing the thickness of frame plate, the strength of plate, and the internal pressure and height of airbag can improve the bearing capacity of the structure. (2) The airbag frame beams for slope support have two stages: construction and working. The bending moments and shear forces at the working stage are larger than those at the construction stage, and the shear forces and bending moments of the frame beams at the foot of the slope rise greatly at the working stage, which should be considered as the most unfavorable factor in the design. (3) The support design should also comprehensively consider the support effects, structural bearing capacity and economy, and give the design scheme to ensure the reliability, timeliness and economy of the structure in the actual rescue and disaster relief. The research results may provide a theoretical basis and guidance for the design and application of the new structure in rapid slope support.
-
0. 引言
随着一带一路进程的加快,填沟造地工程越来越多[1],同时填方压实度不够、地下水环境改变等造成的黄土填方地基不均匀沉降问题屡见不鲜。
关于填土厚度对黄土填方地基沉降影响规律研究,介玉新等[2]和董琪等[3]采用数值模拟,研究了工后短期填土厚度对沉降的影响规律;土工离心模型试验可再现原型特性[4],是最佳物理模拟试验,郑建国等[5]采用该方法研究了填土厚度对沉降的影响规律,但具体量值精度低;朱才辉等[6]对黄土填方地基进行了原位监测,分析了填土厚度对沉降的影响规律,但其仅是对工后短期沉降规律的研究。故有必要进行长期原位测量,分析填土厚度对填土及原地基长期沉降的影响规律。为分析含水率对黄土填方地基沉降影响规律。葛苗苗等[7]通过数值模拟研究地下水环境稳定的黄土填方地基,不同含水率的沉降规律;未研究含水率随时间持续增大对地基长期沉降的影响。对此,王治军等[8]采用黄土场地浸水试验,分析了沉降量和沉降观测点之间的关系,未分析黄土填方地基长期沉降随含水率的变化规律。因此,进行地下水环境改变的黄土填方地基长期沉降变形规律研究具有现实意义[9-10]。关于时间对黄土填方沉降变形的影响规律研究。郑建国等[5]通过离心模型试验分析了时间对填土沉降变形规律的影响,但未研究时间对原地基沉降变形的影响;董琪等[11]通过原位监测分析了填土对原地基沉降影响规律,但仅对工后短期沉降变形规律进行了分析,黄土填方地基长期沉降影响规律的研究鲜见报道。
综上所述,本文以某黄土填方地基工后10 a治理过程为依托,多次采用RTK技术、钻孔取样法和高密度电法,对地面沉降及土层分布情况进行原位测量;采用微动和钻孔取样法,对地下水环境变化进行原位探测。揭示产生不均匀沉降的原因,定量研究地下水环境改变时,填土厚度、含水率和时间对填土和原地基长期沉降的影响规律。
1. 工程概况及沉降原因分析
1.1 工程概况
某黄土填方工程地处陇西黄土高原,总体地势为南低北高。场地于2012年分层填筑而成,整平后自南向北形成四级台地(如图 1),南侧自然标高1957.5 m,北侧自然标高1975.6 m,高差18.1 m。2015年场地主要建筑物修建完成,随后投入使用。在使用过程中厂区地面开始出现不均匀沉降或塌陷现象,随之愈演愈烈,填方区最为严重,挖方区次之。
自2012年1月起的10 a间采用RTK技术对场地地面标高进行了多次测定。结果显示:填方区沉降较挖方区严重,填方区沟底线附近沉降最严重,10 a间沉降超1 m。同时进行了三次钻孔取样,于2021年进行了高密度电法试验(如图 2)。对比知:挖、填方分布情况(见图 1);地层自上而下依次为:①填土,填料为场地削山开挖的土,分层碾压填筑,压实系数0.78,干密度为1.57 g/cm3,厚度为0.0~13.8 m,自沟底线向两侧厚度逐渐变小,以粉土为主,局部夹有少量建筑垃圾、砂砾石等;②原地基土体,场地整平时未对原地基进行处理,填筑完初期原地基土干密度分布均匀为1.73 g/cm3埋深0.0~13.8 m,厚度0.0~29.0 m,厚度分布无明显规律,粉土为主,局部夹杂少量砾砂层;③泥岩,埋深为2.0~31.0 m,表层北高南低、沟底低两侧高,密度为2.03~2.08 g/cm3,干密度为1.72~1.77 g/cm3,含水率为16.2%~18.93%,孔隙比为0.497~0.538。
分析微动及钻孔数据知工后10 a地基含水率变化情况:2012年地基无富水层,土体含水率分布均匀,其值为填土最优含水率12.30%。2019年地基土体出现富水层,土体含水率整体变大且呈深层高表层低的特点,含水率平均值为18.77%,最小值为13.4%,最大值为19.8%(见图 2(c))。2021年地基土体富水区再次扩大,但浅层含水率增大量比深层大,在厚度方向上趋同,地基土体含水率平均值19.9%,最小值10.8%,最大值25.6%(见图 2(d))。
1.2 沉降原因分析
(1)由击实试验得填土最大干密度为1.73 g/cm3,2012年填筑完成时地基土体的干密度为1.14~1.56 g/cm3,平均值为1.31 g/cm3,土体压实系数为0.66~0.90,均值为0.76。可知土体孔隙大,在自重和上部荷载作用下,孔隙被挤密,宏观上表现为地基沉降。土体压实度低,是造成沉降的重要原因。2021年12月厂区沉降已趋稳定。汇总2021年1月沉降稳定区土体压实度随深度分布情况,见图 3。将黄土压实度最小值控制为0.94,平均值控制0.96,工后8~10个月填土沉降速率可稳定到0.01 mm/d。
(2)填筑完成初,地基平均含水率为12.30%,2019年增至18.77%,2021年达到的19.90%,地基平均含水率逐年上升。该场地位于古河道上,中部自北向南发育一条洪水冲沟(如图 1),该冲沟上下游现已整平。2012、2019及2021年勘察时冲沟上游均未见流水。厂区2015年后排水系统逐渐损坏,生产生活用水无法排出,渗入地下。因此推断厂区地基土体含水率增大是地表水下渗所致。绘制2015年1月—2021年12月四级台地标高变化图,见图 4。
对比平均含水率变化曲线(如图 4):曲线斜率随时间增加而变大。这与2015年后厂区地表水下渗,地基含水率变大相对应。可知水流下渗使土体含水率增加,土粒表面水膜变厚,润滑作用下土粒更易移动。压力作用下,土粒相向移动孔隙减小,土体被挤密。同时,该地基土体2012年、2019年和2021年的平均塑限含水率分别为15.40%,17.34%,18.56%。在矿物成分不变的条件下,其塑限含水率增大是由土粒比表面积变大造成的,即水流下渗土颗粒间胶结物质被水溶解,使得部分大土粒分解为小土粒,小土粒进入孔隙中将孔隙填充,使土体变密实。可见黄土填方地基含水率增大是厂区不均匀沉降的主要原因。
2. 土层厚度对沉降影响及规律
2.1 填土厚度对填土沉降变形的影响规律
根据原位测量的结果,工后3~9 a,填土厚度自2.1 m增大到11.3 m,对应填土沉降量从440 mm增大到2100 mm,填土沉降量随填土厚度增大而增大。为更直观的反映填土沉降量和填土厚度的关系,绘制填土沉降量和填土厚度关系曲线,如图 5。填土工后3~9 a沉降量与填土厚度呈线性增长关系,可用下式描述:
C=181.09T+106.97, (1) 式中:C为填土沉降量,T为填土厚度。
当填土厚度从2.1 m增大到11.3 m时,填土沉降量从440 mm增大到2100 mm;填土厚度增大了5.4倍,填土沉降量增大了4.8倍。填土工后长期沉降量增幅和填土厚度增幅不同。为反映填土工后长期沉降量增幅和填土厚度增幅的关系,使用填土单位沉降比(填土沉降量/填土厚度)将更为直观。填土厚度从2.1 m增大到11.3 m,填土工后单位沉降比从20.95%减小到18.58%。可见,填土厚度越大,填土工后长期沉降量也越大,但填土工后长期单位沉降比越小。
2.2 填土厚度对原地基沉降的影响规律
根据原位测量的结果,原地基厚度在5.7~6.3 m之间,上覆填土厚度从2.1 m增大道11.3 m,对应原地基工后3~9 a总沉降量从110 mm增大到350 mm,原地基沉降量随填土厚度增大而增大。填土厚度从2.1 m增加到11.3 m,增大了5.4倍,而对应原地基沉降量只增大了3.2倍,体现出原地基土体的非线弹性沉降压缩特性。为了更直观的反映原地基沉降量和填土厚度的关系,绘制原地基沉降量和填土厚度关系曲线,如图 6。原地基在工后长期沉降变形中,其沉降量和上覆填土厚度成对数函数关系,拟合函数公式为:
CY=410.25lnT+5.02 (2) 式中,CY为原地基沉降量。
3. 含水率对沉降变形影响规律分析
3.1 含水率对黄土填方工程长期沉降影响
对比地基土体含水率变化和地基沉降变化情况,地基含水率从填筑完成时最优含水率12.30%增长到2019年的18.77%和2021年的19.90%;土体塑限也在增大,从2012年15.4%增加到2019年的17.34%再到2021年的18.56%。含水率增幅大于塑限增幅。2017年时地基含水率达到其塑限,进入可塑状态,此时地基沉降速率仍然稳定。直至2019年地基沉降速率突然增大,此时地基含水率增大为18.77%,塑限含水率增大到17.34%,土体含水率比其塑限含水率大1.43%,土体处于可塑状态。故填方地基在含水率达到并超过其塑限含水率1.0%~2.0%时,其沉降速率会发生突变,从0.45 mm/d增大到1.70 mm/d。
3.2 含水率对不同土层沉降影响规律
(1)含水率对填土层沉降影响规律
将沿沟底线12个探孔(见图 1)工后7~9 a的填土层沉降量及平均含水率增量进行汇总,见表 1。场地最高处填土层平均含水率增量最小,两年增大2.00%,对应的填土沉降量469 mm;场地最低处填土层平均含水率增量最大,两年增大2.98%,对应的填土沉降量732 mm;总结含水率对填土层沉降影响的一般规律,绘制填土层沉降量和含水率增量关系曲线,如图 7。图 7中曲线拟合公式为
C=255.54w+1.96, (3) 表 1 沉降量对应含水率增量表Table 1. Corresponding sedimentation amount to increment of water content孔号 填土层沉降量/mm 填土层平均含水率增量/% 原地基沉降量/mm 原地基平均含水率增量/% Z49 469 2.00 93 0.70 Z47 484 2.09 101 0.80 Z46 523 2.10 100 0.85 Z44 594 2.30 130 0.98 Z18 658 2.20 98 1.08 T15 578 2.21 94 1.06 Z26 591 2.16 104 0.94 Z21 577 2.30 172 1.05 Z59 675 2.50 169 1.53 Z2 591 2.48 177 1.28 Z3 739 2.80 260 1.80 Z8 732 2.98 225 2.03 式中,C为填土沉降量;w为平均含水率增量。
若地下水环境稳定,工后7~9 a年填土沉降量约为1.96 mm,填方沉降达到稳定状态;地下水环境改变,填土层含水率在土体塑限附近时,填土层沉降量和含水率增量之间呈线性增长关系,含水率增大1%填土层沉降量约增大256 mm,单位沉降量约增大26 mm/m。
(2)含水率对原地基沉降影响规律
将沿沟底线12个探孔(见图 1)工后7~9 a的填土层沉降变形量及平均含水率增量进行汇总,见表 1。场地最高处原地基平均含水率增量最小,两年内增大了0.70%,对应的填土沉降量为93 mm;场地最低处原地基平均含水率增量最大,两年内增大了2.03%,对应的原地基沉降量为225 mm;总结含水率对原地基沉降影响的一般规律,绘制原地基沉降量和含水率增量的关系曲线如图 8。图 8中曲线拟合公式为
CY=122.09w+0.24, (4) 式中,CY为原地基沉降量,w为平均含水率增量。
若地下水环境保持稳定,平均含水率增量恒定,工后7~9 a原地基沉降变形量约为0.24 mm,填方沉降达到稳定状态;地下水环境改变,原地基含水率在土体塑限附近时,原地基沉降量和含水率增量之间呈线性增长关系,含水率增大1%填土层沉降量约增大122 mm,单位沉降量约增大20 mm/m。地基土体含水率增大对填土沉降的影响约为原地基沉降的1.3倍。
4. 沉降随时间的变化规律分析
4.1 填土和原地基沉降速率随时间的变化规律
为研究黄土填方工程结束较长时间后,在地下水环境发生较大改变条件下,不同地层沉降速率随时间的变化规律。根据原位测量结果使用年平均沉降量(沉降量/沉降时间)研究了填土沉降随时间变化规律。各土层平均沉降速率见表 2。填土平均沉降速率的增大倍数在5.0倍~7.6倍,比原地基1.0倍~3.0倍大,可见填土在工后7~9 a沉降速率增大倍数是原地基沉降速率增大倍数的2.5倍~7.6倍。工后第10年地基土体整体沉降速率减小最终趋稳。知地下水环境改变时(土体含水率增大),黄土填方地基沉降速率并非持续减小最终稳定,而是随着含水率从最优含水率增大到当前含水率,沉降速率先增大,后减小,最终趋稳。
表 2 年平均沉降量表Table 2. Average rates of sedimentation(mm/d) 组号 工后3~7 a平均沉降量 工后7~9 a平均沉降量 填土 原地基 填土 原地基 A 0.07 0.22 0.52 0.66 B 0.19 0.15 1.29 0.15 C 0.32 0.14 1.66 0.15 D 0.42 0.25 2.10 0.60 4.2 各土层沉降速率随时间变化的原因分析
原因分析:工后短期内,土体孔隙比大,地表水能快速通过填土,下渗进入原地基中并在此富集,导致工后短期原地基含水率大。随地基沉降,土体孔隙比变小,使地表水难下渗,在浅层填土中富集,只有少量渗入原地基,使工后较长时间,填土含水率增速大于原地基含,导致填土平均沉降速率增速大于原地基沉降速率增速。对2019和2021年土体纵深含水率进行统计,绘制天然含水率纵深变化分布图 9。
2019年浅层填土含水率小于原地基,2021年浅层填土和原地基含水率均增大,但浅层填土含水率增量大于深层原地基,含水率在土层厚度方向上趋同。因此,地基含水率变化历史导致了地基后期沉降,填土沉降速率大于原地基沉降速率。
5. 结论
(1)填土压实系数低,工后地表水下渗形成富水区,是地基工后长期不均匀沉降的主因。将黄土填方工程填土压实度最小值控制为0.94,平均值控制为0.96,工后8~10个月沉降速率可稳定到0.01 mm/d。
(2)在黄土填方地基工后长期沉降变形中,填土沉降量与填土厚度呈线性增长的关系,但填土厚度增幅和填土沉降量增幅不同,填土厚度越大,填土工后长期沉降量也越大,填土工后长期单位沉降比越小。原地基沉降量和填土厚度呈对数增长关系。
(3)工后黄土填方地基从含水率最优值增大到塑限,地表沉降速率从0.45 mm/d增大到1.70 mm/d;填方地基由填土和原地基两部分组成,填土及原地基长期沉降量均与含水率增量呈线性增长关系,填土单位变形增量为原地基的1.3倍。
(4)工后地基含水率增大到当前含水率过程中,填土工后7~9 a比3~7 a沉降速率增大5.0倍~7.6倍;原地基工后7~9 a比3~7 a沉降速率增大1.0倍~3.0倍,工后10 a地基变形趋稳。填土工后7~9 a沉降速率增大倍数是原地基的2.5倍~7.6倍。填土和原地基沉降速率受地基含水率变化历史影响。
-
表 1 土层参数
Table 1 Soil parameters
黏聚力/kPa 内摩擦角/ (°) 泊松比 重度/(kN⋅m-3) 弹性模量/MPa 19 23 0.3 18 35 表 2 框架梁、锚杆基本参数
Table 2 Basic parameters of frame beam and anchor bolt
立柱/横梁截面面积/m2 气囊初始气压/MPa 锚杆自由段长度/m 自由段弹性模量/MPa 锚杆锚固段长度/m 锚杆锚固段弹性模量/MPa 0.16 0.128 5 2×105 4 2.8×104 -
[1] 单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J]. 中国科学: 地球科学, 2013, 43(6): 1002-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Changes of peripheral fault stress caused by Lushan earthquake in 2013 and its relationship with Wenchuan earthquake in 2008[J]. Scientia Sinica (Terrae), 2013, 43(6): 1002-1009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm
[2] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑: 地球科学), 2002, 32(12): 1020-1030, 1057. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active structures in China[J]. Science in China, SerD, 2002, 32(12): 1020-1030, 1057. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm
[3] 史培军, 张欢. 中国应对巨灾的机制: 汶川地震的经验[J]. 清华大学学报(哲学社会科学版), 2013, 28(3): 96-113, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-QHDZ201303014.htm SHI Peijun, ZHANG Huan. China's response to the catastrophe: the experience of Wenchuan earthquake[J]. Journal of Tsinghua University (Philosophy and Social Sciences), 2013, 28(3): 96-113, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHDZ201303014.htm
[4] 徐玖平, 卢毅. 地震救援·恢复·重建的组织技术及理论模式[J]. 系统工程理论与实践, 2011, 31(增刊1): 107-119. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL2011S1017.htm XU Jiuping, LU Yi. Organizational technology and theoretical pattern of earthquake rescue, recovery and reconstruction[J]. Systems Engineering-Theory & Practice, 2011, 31(S1): 107-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL2011S1017.htm
[5] 张磊. 面向地震灾情时序变化的应急救援物资需求动态预测研究[J]. 灾害学, 2018, 33(3): 161-164. doi: 10.3969/j.issn.1000-811X.2018.03.031 ZHANG Lei. Research on dynamic demand prediction of emergency relief materials oriented to the temporal and spatial change of earthquake disaster losses[J]. Journal of Catastrophology, 2018, 33(3): 161-164. (in Chinese) doi: 10.3969/j.issn.1000-811X.2018.03.031
[6] 何琳, 赵应龙. 舰船用高内压气囊隔振器理论与设计[J]. 振动工程学报, 2013, 26(6): 886-894. doi: 10.3969/j.issn.1004-4523.2013.06.011 HE Lin, ZHAO Yinglong. Theory and design of high-pressure and heavy-duty air spring for naval vessels[J]. Journal of Vibration Engineering, 2013, 26(6): 886-894. (in Chinese) doi: 10.3969/j.issn.1004-4523.2013.06.011
[7] 陈静, 闫澍旺, 孙立强, 等. 隧道气囊在外压作用下的变形特性及试验验证[J]. 土木建筑与环境工程, 2018, 40(5): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805003.htm CHEN Jing, YAN Shuwang, SUN Liqiang, et al. Model test on deformation characteristics of large diameter airbag in tunnel under external pressure[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(5): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805003.htm
[8] 邹炳燕. 液压与气压传动[M]. 北京: 中国铁道出版社, 2020. ZOU Bingyan. Hydraulic and Pneumatic Transmission[M]. Beijing: China Railway Publishing House, 2020. (in Chinese)
[9] LI Y W, NAHON M, SHARF I. Airship dynamics modeling: a literature review[J]. Progress in Aerospace Sciences, 2011, 47(3): 217-239. doi: 10.1016/j.paerosci.2010.10.001
[10] 张利国, 张嘉钟, 贾力萍, 等. 空气弹簧的现状及其发展[J]. 振动与冲击, 2007, 26(2): 146-151, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200702035.htm ZHANG Liguo, ZHANG Jiazhong, JIA Liping, et al. Future and development of air springs[J]. Journal of Vibration and Shock, 2007, 26(2): 146-151, 183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200702035.htm
[11] 廖航, 竺梅芳, 雷江利, 等. 大质量航天器气囊着陆缓冲过程研究[J]. 航天返回与遥感, 2020, 41(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001005.htm LIAO Hang, ZHU Meifang, LEI Jiangli, et al. Airbag landing research of massive spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1): 28-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001005.htm
[12] 东南大学, 天津大学, 同济大学. 混凝土结构学习指导[M]. 3版. 北京: 中国建筑工业出版社, 2020. Southeast University, Zhejiang University, Hunan University. Learning Guidance of Concrete Structure[M]. 3rd ed. Beijing: China Architecture & Building Press, 2020. (in Chinese)
[13] 李怀志. 预应力锚索格构梁受力分析[D]. 贵阳: 贵州大学, 2009. LI Huaizhi. Stress Analysis of Prestressed Anchor Cable Lattice Beam[D]. Guiyang: Guizhou University, 2009. (in Chinese)
[14] 周勇, 朱彦鹏. 框架预应力锚杆柔性支护结构坡面水平位移影响因素[J]. 岩土工程学报, 2011, 33(3): 470-476. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13964.shtml ZHOU Yong, ZHU Yanpeng. Influencing factors of horizontal displacement of wall facing of grillage flexible supporting structure with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 470-476. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13964.shtml
[15] SELVADURAI A P S. Elastic analysis of soil-foundation interaction[M]. New York: distributors for the United States and Canada, Elsevier-North Holland, 1979.
[16] 朱彦鹏, 董建华. 柔性支挡结构的静动力稳定性分析[M]. 北京: 科学出版社, 2015. ZHU Yanpeng, DONG Jianhua. Static and Dynamic Stability Analysis of Flexible Retaining Structure[M]. Beijing: Science Press, 2015. (in Chinese)
[17] 梁瑶, 周德培, 赵刚. 预应力锚索框架梁支护结构的设计[J]. 岩石力学与工程学报, 2006, 25(2): 318-322. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602016.htm LIANG Yao, ZHOU Depei, ZHAO Gang. Design of support of frame beam and prestressed anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 318-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602016.htm
[18] 王其昌. 铁路新型轨下基础应力计算[M]. 北京: 中国铁道出版社, 1987. WANG Qichang. Stress Calculation of Foundation under New Railway Track[M]. Beijing: China Railway Publishing House, 1987. (in Chinese)
[19] 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014. Technical Code for Building Slope Engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[20] 顾晓鲁. 地基与基础[M]. 3版. 北京: 中国建筑工业出版社, 2003. GU Xiaolu. Foundation and Foundation[M]. 3rd ed. Beijing: China Architecture & Building Press, 2003. (in Chinese)
[21] POLI︠A︡NIN A D, ZAĬT︠S︡EV V F. Handbook of Exact Solutions for Ordinary Differential Equations[M]. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2002.
[22] 张兴龙. 纤维增强复合材料结构宏细观多尺度力学性能研究及应用[D]. 西安: 西安电子科技大学, 2015. ZHANG Xinglong. The Macro and Micro Mechanical Properties and Application of the Fiber Reinforced Composite[D]. Xi'an: Xidian University, 2015. (in Chinese)
-
期刊类型引用(1)
1. 王林峰,夏万春,徐浪,黄晓明,谭国金,张继旭. 板簧式减震锚头结构及抗震性能分析. 吉林大学学报(工学版). 2023(06): 1842-1852 . 百度学术
其他类型引用(6)
-
其他相关附件