• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

波浪作用下海底隧道氯离子侵蚀劣化时变分析

张治国, 叶铜, 朱正国, PanY T, 吴钟腾

张治国, 叶铜, 朱正国, PanY T, 吴钟腾. 波浪作用下海底隧道氯离子侵蚀劣化时变分析[J]. 岩土工程学报, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513
引用本文: 张治国, 叶铜, 朱正国, PanY T, 吴钟腾. 波浪作用下海底隧道氯离子侵蚀劣化时变分析[J]. 岩土工程学报, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513
ZHANG Zhiguo, YE Tong, ZHU Zhengguo, PAN Y T, WU Zhongteng. Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513
Citation: ZHANG Zhiguo, YE Tong, ZHU Zhengguo, PAN Y T, WU Zhongteng. Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513

波浪作用下海底隧道氯离子侵蚀劣化时变分析  English Version

基金项目: 

国家自然科学基金项目 41977247

国家自然科学基金项目 42177145

山东省海洋生态环境与防灾减灾重点实验室课题 201703

省部共建交通工程结构力学行为与系统安全国家重点实验室课题 KF2022-07

自然资源部丘陵山地地质灾害防治重点实验室课题 FJKLGH2020K004

详细信息
    作者简介:

    张治国(1978—)男,博士,博士后,教授,博士生导师,主要从事岩土地下工程方面的研究工作。E-mail:zgzhang@usst.edu.cn

  • 中图分类号: TU443

Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads

  • 摘要: 浅水区海底隧道处于复杂波动水力环境中,既有理论研究一般只在静水环境中计入氯离子自由扩散对隧道衬砌的侵蚀作用,而较少考虑海洋波浪力对衬砌结构腐蚀的促进作用。首先采用适用于浅水区的Stokes二阶波浪理论确定了海床表面的波浪压力,基于Biot固结理论获得了隧道衬砌周围的水压响应;接着利用改进的Fick第二定律同时考虑水压和浓度梯度驱动下的氯离子扩散,并采用指数型强度劣化模型描述服役时间内衬砌混凝土的劣化效应;最后结合波浪作用下衬砌氯离子侵蚀效应进行了海底隧道衬砌承载力计算,并将理论解析解与数值模型和既有的试验结果进行了对比,获得了较好的一致性。结果表明,忽略动态波浪压力对衬砌混凝土中氯离子渗流的促进作用,将低估衬砌混凝土内部的氯离子扩散速度,随着波浪周期增加,衬砌内部氯离子侵蚀入渗的最大深度明显增大;而不考虑衬砌强度劣化效应会明显高估隧道结构的服役寿命,不利于海底隧道服役期间的安全储备。
    Abstract: The subsea tunnel in shallow water is in a complex fluctuating hydraulic environment. The existing theoretical researches generally reckon in the corrosion effects of free diffusion of chloride ions on the tunnel linings in the hydrostatic environment, and seldom consider the promotion effects of ocean wave force on the corrosion of the lining structures. Firstly, the wave pressure on the seabed surface is determined by using the Stokes second-order wave theory which is suitable for the shallow water, and the hydraulic response around the tunnel linings is obtained based on the Biot consolidation theory. Then, the improved Fick's second law is used to consider the diffusion of chloride ions driven by the water pressure and concentration gradient, and the exponential strength deterioration model is used to describe the deterioration effects of lining concrete during service time. Finally, considering with the erosion effects of chloride ions under wave action, the bearing capacity of the linings of the subsea tunnel is calculated. The theoretical solution for this study is compared with the numerical models and existing test results, and the solutions are in good agreement. The results show that when the promoting effects of the dynamic wave pressure on chloride ion seepage in lining concrete are neglected, the diffusion velocity of chloride ions in lining concrete will be underestimated. With the increase of wave period, the maximum depth of erosion infiltration of chloride ions inside the lining increases significantly. Without considering the deterioration effects of lining strength, the service life of tunnel structures will be obviously overestimated, which is not conducive to the safety reserve of subsea tunnel during service.
  • 图  1   波浪动压作用下隧道衬砌氯离子侵蚀模型

    Figure  1.   Chloride ion erosion model for tunnel linings under wave dynamic pressure

    图  2   水压作用下离子侵蚀计算模型

    Figure  2.   Computational model for ion erosion under water pressure

    图  3   衬砌截面计算模型

    Figure  3.   Computational model for lining section

    图  4   试验值与理论值对比

    Figure  4.   Comparison between test and theoretical values

    图  5   波浪-海床数值模型及验证

    Figure  5.   Numerical model for wave-seabed and verification

    图  6   海床-隧道数值模型及验证

    Figure  6.   Numerical model for seabed-tunnel and verification

    图  7   隧道衬砌-氯离子侵蚀数值模型及验证

    Figure  7.   Numerical model for chloride ion erosion of tunnel linings and verification

  • [1]

    WANG H L, DAI J G, SUN X Y, et al. Characteristics of concrete cracks and their influence on chloride penetration[J]. Construction and Building Materials, 2016, 107(1): 216-225.

    [2] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. doi: 10.15951/j.tmgcxb.2021.10.009

    WANG Shengnian, ZENG Junjie, FAN Zhihong. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89. (in Chinese) doi: 10.15951/j.tmgcxb.2021.10.009

    [3]

    FU Q, BU M X, ZHANG Z R, et al. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading[J]. Cement and Concrete Composites, 2021, 123: 104166. doi: 10.1016/j.cemconcomp.2021.104166

    [4]

    BAO J W, WANG L C. Combined effect of water and sustained compressive loading on chloride penetration into concrete[J]. Construction and Building Materials, 2017, 156: 708-718. doi: 10.1016/j.conbuildmat.2017.09.018

    [5]

    LI W J, GUO L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241: 118021. doi: 10.1016/j.conbuildmat.2020.118021

    [6] 孙齐. 双掺聚丙烯及钢纤维管片结构的耐久性研究[D]. 成都: 西南交通大学, 2018.

    SUN Qi. Study on Durability of Segments Mixed Polypropylene and Steel Fiber[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)

    [7]

    DURA CRETE. General Guidelines for Durability Design and Redesign[S]. Bruxelles: Dura Crete, 2000.

    [8]

    VIOLETTA B. Life-365 service life prediction model[J]. Concrete International, 2002, 24(12): 53-57.

    [9] 韩兴博, 叶飞, 夏天晗, 等. 在役隧道环境侵蚀下管片承载能力概率劣化模型[J]. 中国公路学报, 2022, 35(1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm

    HAN Xingbo, YE Fei, XIA Tianhan, et al. Probability degradation models of bearing capacity of operating tunnel segments under environmental erosions[J]. China Journal of Highway and Transport, 2022, 35(1): 49-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm

    [10]

    LI K F, LI C Q. Modeling hydroionic transport in cement-based porous materials under drying-wetting actions[J]. Journal of Applied Mechanics, 2013, 80(2): 020904. doi: 10.1115/1.4007907

    [11]

    YU Z W, CHEN Y, LIU P, et al. Accelerated simulation of chloride ingress into concrete under drying–wetting alternation condition chloride environment[J]. Construction and Building Materials, 2015, 93: 205-213. doi: 10.1016/j.conbuildmat.2015.05.090

    [12]

    SUN J. Durability problems of lining structures for Xiamen Xiang'an subsea tunnel in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4): 289-301. doi: 10.3724/SP.J.1235.2011.00289

    [13] 何文正, 徐林生. 硫酸盐侵蚀作用下隧道衬砌时变力学行为研究[J]. 岩土工程学报, 2021, 43(6): 1010-1018. doi: 10.11779/CJGE202106004

    HE Wenzheng, XU Linsheng. Time-dependent mechanical behavior of tunnel linings under sulfate attack[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1010-1018. (in Chinese) doi: 10.11779/CJGE202106004

    [14] 刘四进, 何川, 孙齐, 等. 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30(8): 125-133. doi: 10.3969/j.issn.1001-7372.2017.08.014

    LIU Sijin, HE Chuan, SUN Qi, et al. Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30(8): 125-133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.014

    [15]

    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886

    [16]

    YING H W, ZHU C W, GONG X N. Tide-induced hydraulic response in a semi-infinite seabed with a subaqueous drained tunnel[J]. Acta Geotechnica, 2018, 13(1): 149-157. doi: 10.1007/s11440-017-0525-5

    [17]

    SHOWKATI A, SALARI-RAD H, HAZRATI AGHCHAI M. Predicting long-term stability of tunnels considering rock mass weathering and deterioration of primary support[J]. Tunnelling and Underground Space Technology, 2021, 107: 103670. doi: 10.1016/j.tust.2020.103670

    [18] 刘昌, 张顶立, 张素磊, 等. 考虑围岩流变及衬砌劣化特性的隧道长期服役性能解析[J]. 岩土力学, 2021, 42(10): 2795-2807. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm

    LIU Chang, ZHANG Dingli, ZHANG Sulei, et al. Analytical solution of the long-term service performance of tunnel considering surrounding rock rheology and lining deterioration characteristics[J]. Rock and Soil Mechanics, 2021, 42(10): 2795-2807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm

    [19] 田浩. 长期浸泡下混凝土硫酸盐传输-劣化机理研究[D]. 深圳: 深圳大学, 2015.

    TIAN Hao. Study on Sulfate Transmission-Degradation Mechanism of Concrete under Long-Term Soaking[D]. Shenzhen: Shenzhen University, 2015. (in Chinese)

    [20]

    WANG G, WU Q, ZHOU H, et al. Diffusion of chloride ion in coral aggregate seawater concrete under marine environment [J]. Construction and Building Materials, 2021, 284: 122821. doi: 10.1016/j.conbuildmat.2021.122821

    [21]

    YOO J H, LEE H S, ISMAIL M A. An analytical study on the water penetration and diffusion into concrete under water pressure[J]. Construction and Building Materials, 2011, 25(1): 99-108. doi: 10.1016/j.conbuildmat.2010.06.052

    [22] 王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.

    WANG Xiaowen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)

    [23] 盛杰. 海洋大气环境下TRC加固RC梁受弯时变性能[J]. 建筑结构学报, 2021, 42(增刊1): 284-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm

    SHENG Jie. Time-dependent behavior of RC beams strengthened with TRC in marine atmosphere environment[J]. Journal of Building Structures, 2021, 42(S1): 284-290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm

    [24]

    GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2010, 136(12): 1497-1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260

    [25] 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Code for Design of Concrete Structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [26]

    YIN R R, LI B C, ZHANG C C, et al. The permeability of SO42− and Cl in concrete under the effect of seepage flow and stress fields[J]. Construction and Building Materials, 2018, 162: 697-703. doi: 10.1016/j.conbuildmat.2017.12.071

    [27] 唐雄俊, 毛优达, 孙州. 甬舟铁路金塘海底隧道结构健康监测方案研究[J]. 铁道标准设计, 2021, 65(10): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm

    TANG Xiongjun, MAO Youda, SUN Zhou. Research on structural health monitoring scheme of Jintang subsea tunnel on Yongzhou railway[J]. Railway Standard Design, 2021, 65(10): 189-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm

  • 期刊类型引用(1)

    1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  49
  • PDF下载量:  159
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回