Loading [MathJax]/jax/output/SVG/jax.js

    基于密实核理论的TBM盘形滚刀磨损预测模型研究

    佘磊, 张社荣, 和孙文, 王超, 李雷, 景勇, 刘勇

    佘磊, 张社荣, 和孙文, 王超, 李雷, 景勇, 刘勇. 基于密实核理论的TBM盘形滚刀磨损预测模型研究[J]. 岩土工程学报, 2022, 44(5): 970-978. DOI: 10.11779/CJGE202205021
    引用本文: 佘磊, 张社荣, 和孙文, 王超, 李雷, 景勇, 刘勇. 基于密实核理论的TBM盘形滚刀磨损预测模型研究[J]. 岩土工程学报, 2022, 44(5): 970-978. DOI: 10.11779/CJGE202205021
    SHE Lei, ZHANG She-rong, HE Sun-wen, WANG Chao, LI Lei, JING Yong, LIU Yong. Prediction model for TBM disc cutter wear based on dense core theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 970-978. DOI: 10.11779/CJGE202205021
    Citation: SHE Lei, ZHANG She-rong, HE Sun-wen, WANG Chao, LI Lei, JING Yong, LIU Yong. Prediction model for TBM disc cutter wear based on dense core theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 970-978. DOI: 10.11779/CJGE202205021

    基于密实核理论的TBM盘形滚刀磨损预测模型研究  English Version

    基金项目: 

    国家自然科学基金项目 51779168

    国家自然科学基金项目 51979188

    国家重点研发计划 2018YFC0406903

    详细信息
      作者简介:

      佘磊(1994—),男,博士研究生,主要从事岩石力学理论、隧道开挖及地下工程空间开发等方面的研究工作。E-mail:shelei187@163.com

      通讯作者:

      王超,E-mail: wangchaosg@tju.edu.cn

    • 中图分类号: TU43

    Prediction model for TBM disc cutter wear based on dense core theory

    • 摘要: CCS(Constant Cross Section)盘形滚刀磨损是影响硬岩隧道掘进工作效率和成本预算的关键问题。根据CCS型滚刀的工作特点和岩石切割破碎原理,分析研究滚刀破碎岩石的复杂应力状态,建立了考虑密实核效应的滚刀破岩机理。通过推导密实核长度的理论解析式,获得了基于塑性去除磨粒磨损机制的滚刀磨损量与法向荷载之间的数学关系式,进而提出了滚刀磨损速率及切削寿命预测模型。基于此,分析计算了深圳地铁12号线某区间共757环的正面滚刀实测磨损数据,发现预测值与实测值的相对差异率值均小于10%,验证了预测模型的有效性。此外,通过与现有滚刀磨损预测模型对比分析,结果表明本文提出的预测模型计算结果更接近于现场实测值,说明了滚刀磨损速率和切削寿命指标可作为评价滚刀磨损特性的可靠指标,为TBM工程现场刀具更换方案设计提供更为合理可行的理论依据。
      Abstract: The CCS (constant cross section) type disc cutter wear is an inevitably crucial puzzle that affects the construction efficiency and cost budgeting of hard rock excavation. In this paper, according to the working characteristics of the CCS type disc cutter and the theory of rock squeezing and cutting, the complex stress state of rock-breaking by the cutter is analyzed and the mechanism of disc cutter rock-breaking considering the dense core effect is established. By deducing theoretical analytical expressions of dense core length, the mathematical relationship between cutter wear amount and normal force based on the principle of plastic removal abrasiveness is obtained, then the prediction models for wear rate and the cutting life of a disc cutter are proposed. Based on this context, by analyzing and calculating the measured wear data of the front disc cutter of a total of 757 rings in a section of Metro Line 12 in Shenzhen, China, it is found that the relative difference rate between the predicted value and the measured value is less than 10%, which validates the reliability and accuracy of the prediction model. In addition, by comparing with an existing typical prediction model of the CCS type disc wear, the results show that the calculation results of the prediction model proposed in this paper are more consistent with the field measured values, indicating that the disc cutter wear rate and cutting life can be regarded as reliable indexes to evaluate the cutter wear characteristics, which provides a more reasonable and feasible theoretical basis for the design of tool replacement scheme in TBM engineering.
    • 图  1   盘形滚刀破岩过程示意图

      Figure  1.   Schematic diagram of rock breakage process of disc cutter

      图  2   基于塑性去除机制的磨粒磨损示意图

      Figure  2.   Schematic diagram of abrasiveness based on plastic removal mechanism

      图  3   滚刀切削破岩力学模型示意图

      Figure  3.   Mechanical model of rock breakage by cutter cutting

      图  4   刀盘布置和刀盘区域划分示意图

      Figure  4.   Schematic diagram of cutterhead layout and cutterhead area division

      图  5   臣臣区间隧道地质剖面示意图

      Figure  5.   Geological profile of Chen-chen section tunnel

      图  6   现场实测滚刀磨损累积量

      Figure  6.   Field measurement of cumulative wear of disc cutters

      图  7   滚刀磨损速率预测模型验证及对比

      Figure  7.   Validation and comparison of prediction models for cutter wear rate

      图  8   滚刀切削寿命预测模型验证及对比

      Figure  8.   Validation and comparison of prediction models for cutter cutting life

      表  1   国内外现有典型的盘形滚刀磨损预测模型

      Table  1   Existing domestic and foreign typical disc cutter wear prediction models

      预测模型 原理或方法 公式 数据范围 应用情况
      CSM[6] 岩石挤压与剪切破坏理论、LCM试验 FV=8.76T0.797R0.788φ0.602S0.28σ0.629cσ0.195t 完整性较好的玄武岩、石灰岩、花岗岩
      NTNU[7] 挪威磨蚀性试验(SJ、AVS) Hf=π D2H0kiPR4N 超过250 km隧道 花岗岩、凝灰岩
      魏南珍等[8] 现场磨损数据拟合 M=0.0229R2i+2431Ri3.2245 约3.7 km秦岭隧道 混合花岗岩和混合片麻岩
      张照煌等[9] 岩石挤压、剪切及张拉破坏理论 FV=KAP2fP 约5.6 km秦岭隧道 完整性较好的混合花岗岩
      Frenzel等[10] Cerchar磨蚀性试验(CAI) Hf=π D24nP10002SD1000 超过127 km隧道 微风化花岗岩
      Hassanpour等[11] 岩石硬度试验(VHNR) Hf=2.669VHNR7.891UCS+3430.955 约30 km长Karaj输水隧洞 弱风化火山岩
      李刚等[12] CSM模型 Ft=TRϕPr1 + ψ, Pr=C(Sσ2cσtφRT)1/3 约18.5 km秦岭隧道 完整较好的玄武岩、石灰岩、花岗岩
      杨延栋等[13] Rabinowicz微切削原理 ω=0.16KsS13RiσcD0T16h16σs 约2 km狮子洋隧道和531 m广州地铁隧道 微风化混合花岗岩
      注:Fv为滚刀法向垂直力(N),Hf为滚刀基本寿命(m3/cutter),M为滚刀径向磨损量(mm),Ft为滚刀法向和切向合力(N)。
      下载: 导出CSV

      表  2   复合式土压平衡盾构机技术参数

      Table  2   Technical parameters of composite EPB shield machine

      参数 整机功率/kW 刀盘转速/(r·min-1) 扭矩/(kN·m) 推力/kN 推进速度/(mm·min-1) 刀盘开口率/% 滚刀数量/把
      计算值 1668.05 1.8 2300 10000 15 35 41
      参数 中心滚刀数量/把 正面滚刀数量/把 边滚刀数量/把 滚刀直径/mm 刀刃宽度/mm 刀刃角/(°) 刀圈硬度/HRC
      计算值 6 23 12 457 19 20 60
      下载: 导出CSV

      表  3   微风化花岗岩力学性质及计算参数

      Table  3   Mechanical properties and calculation parameters of slightly weathered granulated granite

      参数 密度/(kg·m-3) 抗压强度/MPa 抗拉强度/MPa 黏聚力/MPa 内摩擦角/(°) 弹性模量/GPa 泊松比 完整性系Kv 滚压系Kn
      计算值 2700 90 6.89 20.8 42.5 26.7 0.22 0.55 0.7
      下载: 导出CSV
    • [1]

      KARAMI M, ZARE S, ROSTAMI J. Study of common wear prediction models for hard rock TBM disc cutters and comparison with field observation in Kerman water conveyance tunnel[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1467–1476. doi: 10.1007/s10064-020-01987-5

      [2]

      TUMAC D, BALCI C. Investigations into the cutting characteristics of CCS type disc cutters and the comparison between experimental, theoretical and empirical force estimations[J]. Tunnelling and Underground Space Technology, 2015, 45: 84–98. doi: 10.1016/j.tust.2014.09.009

      [3] 张照煌. 全断面岩石掘进机平面刀盘上盘形滚刀磨损研究[J]. 现代隧道技术, 2007, 44(6): 32–36. doi: 10.3969/j.issn.1009-6582.2007.06.007

      ZHANG Zhao-huang. Study on the abrasion of disc cutters on full face rock tunnel boring machine[J]. Modern Tunnelling Technology, 2007, 44(6): 32–36. (in Chinese) doi: 10.3969/j.issn.1009-6582.2007.06.007

      [4]

      YANG J H, ZHANG X P, JI P Q, et al. Analysis of disc cutter damage and consumption of TBM1 section on water conveyance tunnel at Lanzhou water source construction engineering[J]. Tunnelling and Underground Space Technology, 2019, 85: 67–75. doi: 10.1016/j.tust.2018.11.040

      [5]

      XUE Y D, ZHAO F, ZHAO H X, et al. A new method for selecting hard rock TBM tunnelling parameters using optimum energy: a case study[J]. Tunnelling and Underground Space Technology, 2018, 78: 64–75. doi: 10.1016/j.tust.2018.03.030

      [6]

      ROSTAMI J. Development of A Force Estimation Model for Rock Fragmentation with Disc Cutters Through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure[D]. Golden: Colorado School of Mines, 1997.

      [7]

      BRULAND A. Hard Rock Tunnel Boring[D]. Trondheim: Norwegian University of Science and Technology, 1998.

      [8] 魏南珍, 沙明元. 秦岭隧道全断面掘进机刀具磨损规律分析[J]. 石家庄铁道学院学报, 1999, 12(2): 86–89. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT902.022.htm

      WEI Nan-zhen, SHA Ming-yuan. The analysis of TBM cutter wear characteristic in the construction of Qinling tunnel[J]. Journal of Shijiazhuang Railway Institute, 1999, 12(2): 86–89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT902.022.htm

      [9] 张照煌, 纪昌明. 全断面岩石掘进机盘形滚刀刃破岩点弧长的解析解及应用研究[J]. 应用基础与工程科学学报, 2009, 17(2): 265–273. doi: 10.3969/j.issn.1005-0930.2009.02.012

      ZHANG Zhao-huang, JI Chang-ming. Analytic solution and it's usage of arc length of rock breakage point of disc edge on full face rock tunnel boring machine[J]. Journal of Basic Science and Engineering, 2009, 17(2): 265–273. (in Chinese) doi: 10.3969/j.issn.1005-0930.2009.02.012

      [10]

      FRENZEL C. Disc cutter wear phenomenology and their implications on disc cutter consumption for TBM[C]// 45th US Rock Mechanics/Geomechanics Symposium, 2011, San Francisco.

      [11]

      HASSANPOUR J, ROSTAMI J, AZALI S T, et al. Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel, Iran[J]. Tunnelling and Underground Space Technology, 2014, 43: 222–231. doi: 10.1016/j.tust.2014.05.007

      [12] 李刚, 朱立达, 杨建宇, 等. 基于CSM模型的硬岩TBM滚刀磨损预测方法[J]. 中国机械工程, 2014, 25(1): 32–35. doi: 10.3969/j.issn.1004-132X.2014.01.007

      LI Gang, ZHU Li-da, YANG Jian-yu, et al. A method to predict disc cutter wear extent for hard rock TBMs based on CSM model[J]. China Mechanical Engineering, 2014, 25(1): 32–35. (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.01.007

      [13] 杨延栋, 陈馈, 李凤远, 等. 盘形滚刀磨损预测模型[J]. 煤炭学报, 2015, 40(6): 1290–1296. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506010.htm

      YANG Yan-dong, CHEN Kui, LI Feng-yuan, et al. Wear prediction model of disc cutter[J]. Journal of China Coal Society, 2015, 40(6): 1290–1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506010.htm

      [14] 吴俊, 袁大军, 李兴高, 等. 盾构刀具磨损机理及预测分析[J]. 中国公路学报, 2017, 30(8): 109–116, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708012.htm

      WU Jun, YUAN Da-jun, LI Xing-gao, et al. Analysis on wear mechanism and prediction of shield cutter[J]. China Journal of Highway and Transport, 2017, 30(8): 109–116, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708012.htm

      [15]

      SU W L, LI X G, JIN D L, et al. Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China[J]. Wear, 2020, 446/447: 203190. doi: 10.1016/j.wear.2020.203190

      [16] 龚秋明, 何冠文, 赵晓豹, 等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报, 2015, 37(1): 54–60. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16037.shtml

      GONG Qiu-ming, HE Guan-wen, ZHAO Xiao-bao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54–60. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16037.shtml

      [17] 余静. 岩石机械破碎规律和破岩机理模型[J]. 煤炭学报, 1982, 7(3): 10–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198203001.htm

      YU Jing. Rules of rock fragmentation with mechanical methods and model of rock failure mechanism[J]. Journl of China Coal Society, 1982, 7(3): 10–18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198203001.htm

      [18] 孙伟, 张旭, 赵奎山. 基于密实核理论的单滚刀多阶段受力预测模型[J]. 机械设计与制造, 2015(6): 9–12. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201506004.htm

      SUN Wei, ZHANG Xu, ZHAO Kui-shan. Multi-stage force prediction model of single disc cutter based on the dense nuclear theory[J]. Machinery Design & Manufacture, 2015(6): 9–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201506004.htm

      [19]

      HUO J Z, WANG W Z, SUN W, et al. The multi-stage rock fragmentation load prediction model of tunnel boring machine cutter group based on dense core theory[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 277–289.

      [20] 张桂菊, 谭青, 劳同炳. TBM盘形滚刀切削力学模型分析[J]. 中南大学学报(自然科学版), 2020, 51(10): 2792–2799. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202010011.htm

      ZHANG Gui-ju, TAN Qing, LAO Tong-bing. Analysis of rock breaking mechanics model for TBM disc cutter[J]. Journal of Central South University (Science and Technology), 2020, 51(10): 2792–2799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202010011.htm

      [21] 赵海鸣, 舒标, 夏毅敏, 等. 基于磨料磨损的TBM滚刀磨损预测研究[J]. 铁道科学与工程学报, 2014, 11(4): 152–158. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201404027.htm

      ZHAO Hai-ming, SHU Biao, XIA Yi-min, et al. Study of wear prediction for TBM cutter based on abrasive wear model[J]. Journal of Railway Science and Engineering, 2014, 11(4): 152–158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201404027.htm

      [22]

      RABINOWICZ, E. Friction and Wear of Materials[M]. NewYork: John Wiley & Sons, 1995.

      [23]

      RABINOWICZ E, DUNN L A, RUSSELL P G. A study of abrasive wear under three-body conditions[J]. Wear, 1961, 4(5): 345–355.

      [24] 龚秋明. 掘进机隧道掘进概论[M]. 北京: 科学出版社, 2014.

      GONG Qiu-ming. Introduction to Tunneling with TBMs[M]. Beijing: Science Press, 2014. (in chinese)

      [25] 荆留杰, 张娜, 杨晨, 等. 基于最小破碎比能TBM滚刀间距设计方法研究[J]. 铁道学报, 2018, 40(12): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201812019.htm

      JING Liu-jie, ZHANG Na, YANG Chen, et al. A design method research on TBM face cutter spacing layout based on mnimum specific energy[J]. Journal of the China Railway Society, 2018, 40(12): 123–129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201812019.htm

      [26] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

      XU Xiao-he, YU Jing. Rock Breakage Thoery[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)

      [27]

      ROSTAMI J. Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 172–186.

    图(8)  /  表(3)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-27
    • 网络出版日期:  2022-09-22
    • 刊出日期:  2022-04-30

    目录

      /

      返回文章
      返回