Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH
-
摘要: 地震可能导致土体弱化甚至液化,从而在倾斜场地引起流滑变形,一般认为在缓倾场地中这种变形相对有限。然而,在2018年苏拉威西地震中,3°以内的缓倾场地却出现了数百米的大变形。已有的模型试验与数值计算大多只考虑了剪切波的作用,无法再现和解释这一现象。通过光滑粒子流体动力学法(Smoothed Particle Hydrodynamics,SPH)开展数值模拟,发现瑞利波对流滑大变形有显著影响。模拟使用HBP(Herschel Bulkley Papanastasiou)流变学模型模拟地基土,使用动力粒子边界(Dynamic Boundary Particles,DBP)实现瑞利波的非一致输入,结合地理信息系统(Geographic Information System,GIS)进行三维建模,计算并对比分析了瑞利波和剪切波输入下Balaroa缓倾场地的变形特征,解释了2018年苏拉威西地震Balaroa滑坡的成因。
-
关键词:
- 瑞利波 /
- 光滑粒子流体动力学法 /
- 流滑 /
- 大变形 /
- 数值模拟
Abstract: The sloping ground may suffer from lateral spreading due to earthquake-induced soil softening or liquefaction, and this deformation is usually relatively limited in the gentle sloping ground. However, several hundred meters of lateral deformation were observed in gentle sloping ground within 3° during the 2018 Sulawesi Earthquake. This phenomenon can not be explained through the observations from the existing model tests and numerical computations, where only the shear wave ground motion is considered. The numerical simulations using the smoothed Particle Hydrodynamics (SPH) method are conducted to show that Rayleigh wave input plays an important role in lateral spreading in the gentle sloping ground. The ground soil is simulated through the Herschel Bulkley Papanastasiou (HBP) rheology constitutive model, the Rayleigh wave is input using the dynamic boundary particles (DBP) boundary condition, and the geographic information system (GIS) is utilized for 3D spatial modeling. The deformation characteristics of the gentle sloping ground under the Rayleigh wave and shear wave are computed and compared, revealing the cause of the observed large deformation of Balaroa landslide in 2018 Sulawesi Earthquake.-
Keywords:
- Rayleigh wave /
- SPH method /
- lateral spreading /
- large deformation /
- numerical simulation
-
全球性的气候问题与突发自然灾害使得岩土及地下工程灾变问题不断凸现,给岩土工程安全与运营构成巨大挑战。岩土体作为地球表面最为广泛存在的地质材料具有复杂的物理力学特性与显著的时空变异性。岩土工程物理模拟试验技术通过融合多学科知识模拟和再现岩土体在自然与工程状态下的物理力学行为,为复杂岩土工程问题的解决提供强力支撑。“交通强国”等重大国家战略的实施也给岩土工程带来了巨大的历史机遇。岩土工程防灾减灾问题由于其普遍性、迫切性和前沿性也成为岩土及地下工程领域研究的新热点。随着科技的进步,岩土工程物理模拟试验技术也正从传统的重力场模拟、离心试验,向数字与智能化转变,而世界级超大型试验设备的建设,更将极大驱动我国岩土工程物理模拟试验技术的未来发展。
为促进我国岩土工程物理模拟试验技术学术交流,由中国水利学会岩土力学专业委员会和中国土木工程学会土力学及岩土工程分会共同主办,交通运输部天津水运工程科学研究院、南京水利科学研究院、中交天津港湾工程研究院有限公司以及天津大学承办的第十届岩土工程物理模拟学术研讨会于2024年8月在天津市滨海新区举行。本届会议是继武汉(2011年)、杭州(2013)、北京(2017)、喀什(2023)会议后全国岩土工程物理模拟试验技术领域的又一次学术盛会。会议筹备期间共收到投稿论文113篇,经过审稿委员会的审议向《岩土工程学报》(增刊)推荐稿件51篇,并在学报2024年增刊1专刊出版。同时,本届研讨会举办了砂土场地桩基水平承载力平行试验,并以特邀报告、主题报告、青年学者报告等在内的形式开展广泛深入的交流,展现最新模拟技术和研究成果,探讨岩土工程物理模拟试验技术在交通强国基础设施建设与防灾减灾研究中的应用,以促进岩土工程物理模拟试验技术对我国重大战略和重大工程的技术支撑作用。
感谢对本届会议召开鼎力相助的交通运输部天津水运工程科学研究院及各有关单位,感谢向本届会议投稿的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。
第十届全国岩土工程物理模拟学术研讨会组委会 -
表 1 软弱土层与坚硬土层的本构参数
Table 1 Constitutive parameters of weak and stiff soil
本构参数 质量密度/(g·cm-3) 初始屈服应力τ0/kPa 运动黏度υ0/(m2·s-1) 参数m/(m·s-1) 参数n 软弱土层 2.0 1.1 0.001 100 1.0 坚硬土层 2.0 10.0 0.001 100 1.0 -
[1] SASSA S, TAKAGAWA T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 2019, 16(1): 195-200. doi: 10.1007/s10346-018-1114-x
[2] HAZARIKA H, ROHIT D, KIYOTA T, et al. Forensic evaluation of long-distance flow in gently sloped ground during the 2018 Sulawesi earthquake, Indonesia[M]//Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics. Singapore: Springer Singapore, 2021: 247-280.
[3] KUTTER B L, MANZARI M T, ZEGHAL M. Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017[M]. New York: Springer Nature, 2019.
[4] LI Y Y, LUO C, ZHANG J M, et al. Rayleigh wave-shear wave coupling mechanism for large lateral deformation in level liquefiable ground[J]. Computers and Geotechnics, 2022, 143: 104631. doi: 10.1016/j.compgeo.2022.104631
[5] ZHANG X, KRABBENHOFT K, SHENG D C, et al. Numerical simulation of a flow-like landslide using the particle finite element method[J]. Computational Mechanics, 2015, 55(1): 167-177. doi: 10.1007/s00466-014-1088-z
[6] CECCATO F, YERRO A, GIRARDI V, et al. Two-phase dynamic MPM formulation for unsaturated soil[J]. Computers and Geotechnics, 2021, 129: 103876. doi: 10.1016/j.compgeo.2020.103876
[7] 荚颖, 唐小微, 栾茂田, 等. 土坝的地震响应及液化无网格法分析[J]. 水利学报, 2009, 40(4): 506-512. doi: 10.3321/j.issn:0559-9350.2009.04.018 JIE Ying, TANG Xiaowei, LUAN Maotian, et al. Meshless analysis on seismic response and liquefaction of embankments[J]. Journal of Hydraulic Engineering, 2009, 40(4): 506-512. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.04.018
[8] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
[9] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. doi: 10.1086/112164
[10] MAEDA K, SAKAI M. Development of seepage failure analysis procedure of granular ground with Smoothed Particle Hydrodynamics (SPH) method[J]. Journal of Applied Mechanics, 2004, 7: 775-786. doi: 10.2208/journalam.7.775
[11] BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570. doi: 10.1002/nag.688
[12] 黄雨, 郝亮, 谢攀, 等. 土体流动大变形的SPH数值模拟[J]. 岩土工程学报, 2009, 31(10): 1520-1524. doi: 10.3321/j.issn:1000-4548.2009.10.007 HUANG Yu, HAO Liang, XIE Pan, et al. Numerical simulation of large deformation of soil flow based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1520-1524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.007
[13] CRESPO A J C, DOMINGUEZ J M, ROGERS B D, et al. DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004
[14] 胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. doi: 10.11779/CJGE201601005 HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. (in Chinese) doi: 10.11779/CJGE201601005
[15] 唐宇峰, 施富强, 廖学燕. 基于SPH的边坡稳定性计算中失稳判据研究[J]. 岩土工程学报, 2016, 38(5): 904-908. doi: 10.11779/CJGE201605016 TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. (in Chinese) doi: 10.11779/CJGE201605016
[16] 骆钊, 汪淳. 改进的SPH边界处理方法与土体大变形模拟[J]. 计算力学学报, 2018, 35(3): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm LUO Zhao, WANG Chun. Improved SPH boundary conditions and simulation for large deformation of soil[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm
[17] HAN Z, SU B, LI Y G, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model[J]. Engineering Geology, 2019, 255: 26-36. doi: 10.1016/j.enggeo.2019.04.013
[18] PENG C, LI S, WU W, et al. On three-dimensional SPH modelling of large-scale landslides[J]. Canadian Geotechnical Journal, 2022, 59(1): 24-39. doi: 10.1139/cgj-2020-0774
[19] FRIGAARD I A, NOUAR C. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 127(1): 1-26. doi: 10.1016/j.jnnfm.2005.01.003
[20] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics[J]. Journal of Computational Physics, 1993, 109(1): 67-75. doi: 10.1006/jcph.1993.1199
[21] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226. doi: 10.1006/jcph.1997.5776
[22] DOMNIK B, PUDASAINI S P, KATZENBACH R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68. doi: 10.1016/j.jnnfm.2013.07.005
[23] CRESPO A J C, GOMEZ G M, DALRYMPLE R A. Boundary conditionsgenerated by dynamic particles in SPH methods[J]. Computers Material and Continua, 2007, 5: 173-184.
[24] PAN C, ZHANG R F, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24(12): 2562-2575. doi: 10.1177/1077546316689014
[25] BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
[26] WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019, 12(11): 940-945. doi: 10.1038/s41561-019-0448-x
[27] GALLANT A P, MONTGOMERY J, MASON H B, et al. The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake[J]. Landslides, 2020, 17(8): 1925-1934. doi: 10.1007/s10346-020-01354-1
[28] KIYOTA T, FURUICHI H, HIDAYAT R F, et al. Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia[J]. Soils and Foundations, 2020, 60(3): 722-735. doi: 10.1016/j.sandf.2020.03.015
-
其他相关附件