• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土中倾斜条形锚板法向拉拔承载特性研究

胡伟, 张翰林, 孟建伟, 刘顺凯, 聂志红

胡伟, 张翰林, 孟建伟, 刘顺凯, 聂志红. 砂土中倾斜条形锚板法向拉拔承载特性研究[J]. 岩土工程学报, 2023, 45(7): 1451-1460. DOI: 10.11779/CJGE20220474
引用本文: 胡伟, 张翰林, 孟建伟, 刘顺凯, 聂志红. 砂土中倾斜条形锚板法向拉拔承载特性研究[J]. 岩土工程学报, 2023, 45(7): 1451-1460. DOI: 10.11779/CJGE20220474
HU Wei, ZHANG Hanlin, MENG Jianwei, LIU Shunkai, NIE Zhihong. Normal pullout bearing characteristics of inclined strip anchor plate in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1451-1460. DOI: 10.11779/CJGE20220474
Citation: HU Wei, ZHANG Hanlin, MENG Jianwei, LIU Shunkai, NIE Zhihong. Normal pullout bearing characteristics of inclined strip anchor plate in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1451-1460. DOI: 10.11779/CJGE20220474

砂土中倾斜条形锚板法向拉拔承载特性研究  English Version

基金项目: 

国家自然科学基金项目 52178332

详细信息
    作者简介:

    胡伟(1982—),男,博士,教授,博士生导师,主要从事地基与基础工程方面的研究工作。E-mail: yilukuangben1982@163.com

  • 中图分类号: TU43

Normal pullout bearing characteristics of inclined strip anchor plate in sand

  • 摘要: 锚板倾斜埋设时,倾角对承载特性的影响研究尚不充分,倾角与埋深耦合控制锚板承载机制的规律还不明确。基于模型试验和数字照相测量技术开展了砂土中倾斜条形锚板的承载特性研究,得到了以下4点认识:①锚板上拔承载因子Nγ随埋深比增加呈先快后缓的增大趋势,直至趋于一渐近值,倾角越大,上拔承载因子增速越快。②承载力增长系数Ki随埋设倾角增加表现为非线性增大,而随埋深比的增大则呈整体下降趋势,速率先快后慢,且埋深比越大,埋设倾角对拉拔承载力的影响越小。③锚周土体滑动面随埋深比和埋设倾角的演化可用椭圆来刻画,该椭圆的长短轴比随埋深比的增大而减小,两者之间可用幂函数来表征;埋设倾角对椭圆大小没有影响,将同埋深比水平锚板滑动面椭圆转动一定角度可得到倾斜锚板滑动面椭圆,该角度可表达为埋设倾角的二次函数。④采用等效路径法可将浅埋水平锚板拉拔力学模型推演至深埋倾斜锚板拉拔力学模型,使得在埋深和倾角全域内构建锚板拉拔力学分析模型成为可能。
    Abstract: For the inclined burial anchor plate, the researches on the influences of inclination angle on the bearing characteristics are insufficient, and the coupling effects of inclination angle and burial depth controlling the bearing mechanism are also not clear. Based on the model tests and the digital photographic measurement technology, the bearing characteristics of the inclined strip anchor plate in sand are studied, and the following conclusions are drawn: (1) The uplift bearing factor Nγ of the anchor plate increases rapidly at first and then slowly with the increase of the burial depth ratio, until it approaches an asymptotic value. The larger the inclination angle, the faster the growth rate of uplift bearing factor. (2) The growth factor of bearing capacity Ki increases nonlinearly with the increase of the burial angle, but decreases as a whole with the increase of the burial depth ratio, and the growth rate is faster at first and then slower. The larger the burial depth ratio is, the smaller the influence of inclination angle on the uplift bearing capacity. (3) The evolution of sliding surface of soil around the anchor with the burial depth ratio and the inclination angle can be described by an ellipse. The ratio of the major to minor axes of the ellipse decreases with the increase of the burial depth ratio, which can be described by the power function. With the same burial depth ratio, the size of the ellipse is not affected by the inclination angle, but has to rotate the ellipse of the horizontal anchor plate by a certain angle to obtain the ellipse of the inclined anchor plate, and this rotation angle can be expressed by the quadratic function of the inclination angle. (4) The equivalent path method can be used to deduce the mechanical models from the shallow-burial horizontal anchor plate to the deep-burial inclined one, which makes it possible to establish the pullout mechanics analysis model for the anchor plate in the whole domain of burial depth and inclination angle.
  • 图  1   不同锚板埋设倾角

    Figure  1.   Different burial angles of anchor plate

    图  2   模型试验装置

    Figure  2.   Apparatus for model tests

    图  3   代表性荷载-位移曲线

    Figure  3.   Typical load-displacement curves

    图  4   上拔承载因子随埋设倾角变化规律

    Figure  4.   Variation of uplift bearing factor with burial angle

    图  5   上拔承载因子随埋深比变化规律

    Figure  5.   Variation of uplift bearing factor with burial depth ratio

    图  6   增长系数Ki随埋设倾角变化规律

    Figure  6.   Variation of Ki with burial angle

    图  7   增长系数Ki随埋深比变化规律

    Figure  7.   Variation of Ki with burial depth ratio

    图  8   锚周土体最大剪应变场

    Figure  8.   Maximum shear strain fields of soil around anchor plate

    图  9   锚周土体位移场(H/B=4)

    Figure  9.   Displacement fields of soil around anchor plate (H/B=4)

    图  10   a/b随埋深比变化规律

    Figure  10.   Variation of a/b with burial depth ratio

    图  11   a/b随埋设倾角变化规律

    Figure  11.   Variation of a/b with burial angle

    图  12   锚周土体最大剪应变场

    Figure  12.   Maximum shear strain fields of soil around anchor plate

    图  13   β/α随埋设倾角变化规律

    Figure  13.   Variation of β/α with burial angle

    图  14   β/α随埋深比变化规律

    Figure  14.   Variation of β/α with burial depth ratio

    图  15   全域范围内构建力学模型路径

    Figure  15.   Model paths in whole domain

  • [1] 王昊, 孙玉海, 江建宏, 等. 考虑摩擦系数的砂土中竖向锚定板承载机理离散元分析[J]. 岩土工程学报, 2021, 43(增刊2): 117-120. doi: 10.11779/CJGE2021S2028

    WANG Hao, SUN Yuhai, JIANG Jianhong, et al. Mechanism of bearing capacity of vertical anchor plates in sand considering interface friction based on DEM method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 117-120. (in Chinese) doi: 10.11779/CJGE2021S2028

    [2] 赵炼恒, 罗强, 李亮, 等. 水平浅埋条形锚板极限抗拔力上限计算[J]. 岩土力学, 2010, 31(2): 516-522. doi: 10.3969/j.issn.1000-7598.2010.02.030

    ZHAO Lianheng, LUO Qiang, LI Liang, et al. Ultimate pull-out capacity of strip anchor plates with upper bound theorem[J]. Rock and Soil Mechanics, 2010, 31(2): 516-522. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.02.030

    [3] 朱碧堂, 杨敏, 郭蔚东. 竖向浅埋锚锭板的侧向极限拉拔荷载[J]. 岩土工程学报, 2006, 28(10): 1236-1241. doi: 10.3321/j.issn:1000-4548.2006.10.011

    ZHU Bitang, YANG Min, GUO Weidong. Pullout capacity of vertically-buried shallow anchor plates[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1236-1241. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.011

    [4] 黄明华, 李盾, 李嘉成. 斜坡浅埋水平条形锚板抗拔承载力的极限分析[J]. 水文地质工程地质, 2019, 46(1): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901016.htm

    HUANG Minghua, LI Dun, LI Jiacheng. A limit analysis of the ultimate pullout capacity of a shallow horizontal strip anchor plate embedded in slope[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 116-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901016.htm

    [5] 茜平一, 刘祖德, 刘一亮. 浅埋斜拔锚板板周土体的变形破坏特征[J]. 岩土工程学报, 1992, 14(1): 62-66. doi: 10.3321/j.issn:1000-4548.1992.01.008

    QIAN/XI) Pingyi, LIU Zude, LIU Yiliang. Deformation and failure characteristics of soil around shallow-buried inclined anchor plate[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62-66. (in Chinese doi: 10.3321/j.issn:1000-4548.1992.01.008

    [6] 胡伟, 高文华, 赵璞, 等. 竖向正方形锚板水平拉拔极限承载力三维统一理论解研究[J]. 岩土工程学报, 2019, 41(1): 111-120. doi: 10.11779/CJGE201901012

    HU Wei, GAO Wenhua, ZHAO Pu, et al. Three-dimensional unified theoretical researches on ultimate horizontal pullout capacity of vertical square anchors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 111-120. (in Chinese) doi: 10.11779/CJGE201901012

    [7] 高宇新, 朱鸿鹄, 张春新, 等. 砂土中锚板上拔三维物质点法模拟研究[J]. 岩土工程学报, 2022, 44(2): 295-304. doi: 10.11779/CJGE202202011

    GAO Yuxin, ZHU Honghu, ZHANG Chunxin, et al. Three-dimensional uplift simulation of anchor plates in sand using material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 295-304. (in Chinese) doi: 10.11779/CJGE202202011

    [8]

    CHOUDHARY A K, PANDIT B, SIVAKUMAR BABU G L. Three-dimensional analysis of uplift behaviour of square horizontal anchor plate in frictional soil[J]. International Journal of Geosynthetics and Ground Engineering, 2018, 4(2): 14. doi: 10.1007/s40891-018-0130-1

    [9]

    EMIRLER B, TOLUN M, LAMAN M. Numerical Investigation of the Uplift Capacity of Inclined Anchor Plates in Sand[C]. Fourth International Conference on New Developments in Soil Mechanics and Geotechnical Engineering. 2016.

    [10]

    YU S B, HAMBLETON J P, SLOAN S W. Analysis of inclined strip anchors in sand based on the block set mechanism[J]. Applied Mechanics and Materials, 2014, 553: 422-427. doi: 10.4028/www.scientific.net/AMM.553.422

    [11]

    WANG M C, WU A H. Yielding load of anchor in sand[C]// Application of Plasticity & Generalized Stress strain in Geotechnical Engineering, ASCE, 1982.

    [12]

    FRYDMAN S, SHAHAM I. Pullout capacity of slab anchors in sand[J]. Canadian Geotechnical Journal, 1989, 26(3): 385-400. doi: 10.1139/t89-053

    [13]

    MURRAY E J, GEDDES J D. Discussion: Resistance of passive inclined anchors in cohesionless medium[J]. Géotechnique, 1990, 40(2): 317-318. doi: 10.1680/geot.1990.40.2.317

    [14] 丁佩民, 肖志斌, 张其林, 等. 砂土中锚板抗拔承载力研究[J]. 建筑结构学报, 2003, 24(5): 82-91, 97. doi: 10.3321/j.issn:1000-6869.2003.05.012

    DING Peimin, XIAO Zhibin, ZHANG Qilin, et al. Uplift capacity of anchor plates in sand[J]. Journal of Building Structures, 2003, 24(5): 82-91, 97. (in Chinese) doi: 10.3321/j.issn:1000-6869.2003.05.012

    [15]

    HANNA A, FORIERO A, AYADAT T. Pullout capacity of inclined shallow single anchor plate in sand[J]. Indian Geotechnical Journal, 2015, 45(1): 110-120. doi: 10.1007/s40098-014-0113-7

    [16]

    GHALY A M, CLEMENCE S P. Pullout performance of inclined helical screw anchors in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(7): 617-627. doi: 10.1061/(ASCE)1090-0241(1998)124:7(617)

    [17] 刘君, 胡宏. 砂土地基锚板基础抗拔承载力PFC数值分析[J]. 计算力学学报, 2013, 30(5): 677-682, 703. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305014.htm

    LIU Jun, HU Hong. PFC analysis of the uplift bearing capacity of plate anchors in sand[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 677-682, 703. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305014.htm

    [18] 林志, 胡伟, 赵璞, 等. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究[J]. 岩土力学, 2021, 42(11): 3059-3068, 3168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111016.htm

    LIN Zhi, HU Wei, ZHAO Pu, et al. Model test study on inclined pull-out bearing characteristics of flat circular anchor in sand[J]. Rock and Soil Mechanics, 2021, 42(11): 3059-3068, 3168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111016.htm

    [19] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815. http://www.cgejournal.com/cn/article/id/15299

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese) http://www.cgejournal.com/cn/article/id/15299

    [20] LI Yuanhai. Digital Photogrammetry Technology and its Application in Geotechnical Engineering Experiment[M]. Xuzhou, China: China University of Mining & Technology Press, 2009. (in Chinese)
    [21]

    BRADSHAW A S, GIAMPA J R, GERKUS H, et al. Scaling considerations for 1-g model horizontal plate anchor tests in sand[J]. Geotechnical Testing Journal, 2016, 39(6): 20160042.

    [22]

    MEYERHOF G G. Uplift resistance of inclined anchors and piles[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(7): 97.

    [23]

    JESMANI M, KAMALZARE M, NAZARI M. Numerical study of behavior of anchor plates in clayey soils[J]. International Journal of Geomechanics, 2013, 13(5): 502-513.

    [24] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

    [25] 刘明亮, 朱珍德, 刘金元. 基于PIV技术的锚板抗拉破坏模式识别[J]. 河海大学学报(自然科学版), 2011, 39(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201101018.htm

    LIU Mingliang, ZHU Zhende, LIU Jinyuan. Identification of failure modes for uplift anchor plates based on PIV technology[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201101018.htm

    [26] 朱长歧, 初晓锋. 钙质砂中锚定板的极限抗拔力计算[J]. 岩土力学, 2003, 24(增刊2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2034.htm

    ZHU Changqi, CHU Xiaofeng. Calculation of ultimate extraction resistence of anchoring plates in calcaress sands[J]. Rock and Soil Mechanics, 2003, 24(S2): 153-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2034.htm

    [27] 史旦达, 毛逸瑶, 杨勇, 等. 基于DIC技术的砂土中圆形锚板上拔土体变形特性试验研究[J]. 岩土力学, 2020, 41(10): 3201-3213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010005.htm

    SHI Danda, MAO Yiyao, YANG Yong, et al. Experimental study on the deformation characteristics of soils around uplift circular plate anchors using digital image correlation technology[J]. Rock and Soil Mechanics, 2020, 41(10): 3201-3213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010005.htm

  • 期刊类型引用(2)

    1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
    2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看

    其他类型引用(4)

图(15)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回