• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于分形维数特征的岩石介质气-水相对渗透率预测模型研究

孔德森, 赵明凯, 时健, 滕森

孔德森, 赵明凯, 时健, 滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究[J]. 岩土工程学报, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
引用本文: 孔德森, 赵明凯, 时健, 滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究[J]. 岩土工程学报, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
Citation: KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463

基于分形维数特征的岩石介质气-水相对渗透率预测模型研究  English Version

基金项目: 

山东省自然科学基金项目 ZR2019MEE027

详细信息
    作者简介:

    孔德森(1977—),男,山东滕州人,教授,博士生导师,主要从事岩石裂隙渗流、海洋岩土工程、桩基工程等领域的研究工作。E-mail:dskong828@163.com

    通讯作者:

    赵明凯, E-mail: mikia_07@163.com

  • 中图分类号: TU45

A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics

  • 摘要: 相对渗透率是表征岩石介质两相流动特征的重要力学参数,如何快速有效地获取相对渗透率是当前研究的热点问题。采用分形方法将岩石孔隙等效为尺寸不规则的毛细管,基于动量平衡原理建立气-水两相流动的平衡关系式,开发了一种预测相对渗透率的分形解析模型。然后,基于孔径尺度和流动路径的迂曲度特征,研究了岩石的孔隙结构对两相流体渗流特性的影响。该模型得出的相对渗透率曲线与相关试验数据吻合程度高,验证了模型的合理性。研究结果表明:该模型相比于其他相对渗透率模型准确性更高。岩石的渗流特性与流体性质和孔隙结构有关,表征孔径尺度的分形维数Df和迂曲度分形维数DT越小,两相流的渗透率越大,而DT的值增大会降低水相的相对渗透率,增大气相的相对渗透率。该模型无需使用任何经验常数计算相对渗透率,避免了数据处理的繁琐过程,可有效应用于页岩气开采等工程领域。
    Abstract: The relative permeability is an essential mechanical parameter characterizing the two-phase flow of rock media, and how to obtain the relative permeability quickly and effectively has become a critical issue to be solved in the current studies. A fractal analytical model for predicting the relative permeability of two-phase flow is developed using the fractal method to equate the rock pores as the capillaries with varying sizes and establish the equilibrium equation for gas-water phase flow based on the momentum balance. Then, the influences of the pore structure of the rock media on the permeability characteristics of the two-phase flow are studied based on the pore size scale and the tortuosity characteristics of the flow path. The relative permeability curves obtained by the model are in good agreement with the relevant experimental data, which verifies the reasonableness of the model. The results show that the model has better accuracy than other relative permeability models. The permeability characteristics of the rock media are related to fluid properties and pore structure. The smaller the fractal dimension Df and the tortuous fractal dimension DT, the larger the permeability of two-phase flow. In addition, increasing the value of DT decreases the relative permeability of the water phase and increases the relative permeability of the gas phase. The model does not use any empirical constants to calculate the relative permeability, which avoids tedious data processing and can be effectively used in engineering fields such as shale gas extraction.
  • 图  1   两相流动模型示意图

    Figure  1.   Schematic diagram of two-phase flow model

    图  2   两相流动结构示意图

    Figure  2.   Schematic diagram of two-phase flow structure

    图  3   相对渗透率模型的验证

    Figure  3.   Validation of the relative permeability model

    图  4   提出的模型与其他相对渗透率模型的比较

    Figure  4.   Comparison between proposed model and other relative permeability models

    图  5   无量纲渗透率随饱和度的变化关系

    Figure  5.   Variation of dimensionless permeability in relation to saturation

    图  6   相对渗透率随饱和度的变化关系

    Figure  6.   Variation of relative permeability in relation to saturation

  • [1]

    LI R, CHEN Z X, WU K L, et al. An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs[J]. Petroleum Science, 2021, 18(6): 1776-1787. doi: 10.1016/j.petsci.2021.09.005

    [2] 李博, 王晔, 邹良超, 等. 岩石裂隙内浆液-水两相流可视化试验与驱替规律研究[J]. 岩土工程学报, 2022, 44(9): 1608-1616, 2. doi: 10.11779/CJGE202209005

    LI Bo, WANG Ye, ZOU Liangchao, et al. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616, 2. (in Chinese) doi: 10.11779/CJGE202209005

    [3] 肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209-2219. doi: 10.11779/CJGE202112007

    XIAO Zhiyong, WANG Changsheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. (in Chinese) doi: 10.11779/CJGE202112007

    [4]

    ROMM E S. Fluid Flow in Fractured Rocks[M]. Moscow: Nedra Publishing House, 1966.

    [5]

    NICHOLL M J, RAJARAM H, GLASS R J. Factors controlling satiated relative permeability in a partially-saturated horizontal fracture[J]. Geophysical Research Letters, 2000, 27(3): 393-396. doi: 10.1029/1999GL006083

    [6]

    WATANABE N, SAKURAI K, ISHIBASHI T, et al. New ν-type relative permeability curves for two-phase flows through subsurface fractures[J]. Water Resources Research, 2015, 51(4): 2807-2824. doi: 10.1002/2014WR016515

    [7]

    CHEN C Y, HORNE R N, FOURAR M. Experimental study of liquid-gas flow structure effects on relative permeabilities in a fracture[J]. Water Resources Research, 2004, 40(8): w08301.

    [8] 张鹏伟, 胡黎明, Jay N Meegoda, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37-45. doi: 10.11779/CJGE202001004

    ZHANG Pengwei, HU Liming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. (in Chinese) doi: 10.11779/CJGE202001004

    [9]

    SONG W H, YAO J, MA J S, et al. Numerical simulation of multiphase flow in nanoporous organic matter with application to coal and gas shale systems[J]. Water Resources Research, 2018, 54(2): 1077-1092. doi: 10.1002/2017WR021500

    [10]

    GHANBARIAN B, LIANG F, LIU H H. Modeling gas relative permeability in shales and tight porous rocks[J]. Fuel, 2020, 272: 117686. doi: 10.1016/j.fuel.2020.117686

    [11]

    LUO M, GLOVER P W J, ZHAO P Q, et al. 3D digital rock modeling of the fractal properties of pore structures[J]. Marine and Petroleum Geology, 2020, 122: 104706. doi: 10.1016/j.marpetgeo.2020.104706

    [12] 赵明凯, 孔德森. 考虑裂隙面粗糙度和开度分形维数的岩石裂隙渗流特性研究[J]. 岩石力学与工程学报, 2022, 41(10): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm

    ZHAO Mingkai, KONG Desen. Study on seepage characteristics of rock fractures considering fracture surface roughness and opening fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1993-2002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm

    [13]

    KRUHL J H. Fractal-geometry techniques in the quantification of complex rock structures: aspecial view on scaling regimes, inhomogeneity and anisotropy[J]. Journal of Structural Geology, 2013, 46: 2-21. doi: 10.1016/j.jsg.2012.10.002

    [14] 丁自伟, 李小菲, 唐青豹, 等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报, 2020, 39(9): 1787-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htm

    DING Ziwei, LI Xiaofei, TANG Qingbao, et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1787-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htm

    [15]

    LAI F P, LI Z P, FU Y K, et al. Investigating the effects of pore-structure characteristics on porosity and absolute permeability for unconventional reservoirs[J]. Energy & Fuels, 2021, 35(1): 690-701.

    [16]

    WANG H M, WANG J G, WANG X L, et al. An improved relative permeability model for gas-water displacement in fractal porous media[J]. Water, 2019, 12(1): 27. doi: 10.3390/w12010027

    [17]

    YU B M, LI J H, LI Z H, et al. Permeabilities of unsaturated fractal porous media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642. doi: 10.1016/S0301-9322(03)00140-X

    [18]

    SU H B, ZHANG S M, SUN Y H, et al. A comprehensive model for oil-water relative permeabilities in low- permeability reservoirs by fractal theory[J]. Fractals, 2020, 28(3): 2050055. doi: 10.1142/S0218348X20500553

    [19]

    MIAO T J, CHEN A M, XU Y, et al. A permeability model for water–gas phase flow in fractal fracture networks[J]. Fractals, 2018, 26(6): 1850087.

    [20]

    CHIMA A, GEIGER S. An analytical equation to predict gas-water relative permeability curves in fractures[C]// Society of Petroleum Engineers SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, Mexico City, Mexico, 2012.

    [21]

    YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(5): 1.

    [22]

    YU B M, LI J H. A fractal model for the transverse thermal dispersion conductivity in porous media[J]. Chinese Physics Letters, 2004, 21(1): 117-120.

    [23]

    PELEG S, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(4): 518-523.

    [24]

    PANIGRAHY C, SEAL A, MAHATO N K, et al. Differential box counting methods for estimating fractal dimension of gray-scale images: a survey[J]. Chaos, Solitons & Fractals, 2019, 126: 178-202.

    [25]

    SAAFAN M, GANAT T, MOHYALDINN M, et al. A fractal model for obtaining spontaneous imbibition capillary pressure curves based on 2D image analysis of low-permeability sandstone[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109747.

    [26]

    YU B M, LI J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372.

    [27]

    LI Y S, LI X F, TENG S N, et al. Improved models to predict gas–water relative permeability in fractures and porous media[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 190-201.

    [28]

    RANAIVOMANANA H, VERDIER J, SELLIER A, et al. Prediction of relative permeabilities and water vapor diffusion reduction factor for cement-based materials[J]. Cement and Concrete Research, 2013, 48: 53-63.

    [29]

    LI K, HORNE R N. Steam-water relative permeability by the capillary pressure method[C]// International Symposium of the Society of Core analysts. Society for Core Analysts, New Brunswick, Canada, 2001, 17-19.

    [30]

    DIOMAMPO G P. Relative Permeability Through Fractures [D]. Palo Alto: Stanford University, 2001.

    [31]

    BROOKS R H, COREY A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92(2): 61-88.

    [32]

    FOURAR M, BORIES S. Experimental study of air-water two-phase flow through a fracture (narrow channel)[J]. International Journal of Multiphase Flow, 1995, 21(4): 621-637.

    [33]

    WHEATCRAFT S W, TYLER S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry[J]. Water Resources Research, 1988, 24(4): 566-578.

    [34]

    YU B M, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993.

  • 期刊类型引用(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术

    其他类型引用(13)

图(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-04-17
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回