Study on the influencing factors for segment dislocation during shield tunnelling
-
摘要: 为分析盾构隧道施工期各因素对管片上浮错台的影响,基于盾构隧道施工期的受力模式拟定了隧道直径、围岩条件、覆土厚度、浆液凝固时间、浆液密度、盾构掘进速度及盾尾间隙等7个主要影响因素,分别建立了盾构隧道施工期上浮分析模型与管片错台量计算模型,分析了施工期各因素影响下盾构隧道上浮错台量的变化规律。进一步地,结合现场监测试验结果,验证了施工期管片上浮错台的现象与规律,得出主要结论如下:①地层刚度减弱、浆液密度增大、浆液凝固时间增长、隧道埋深减小、隧道掘进速度提高、盾尾间隙增大及浆液凝固后刚度减小将加剧施工期管片的上浮错台。②隧道直径增大使管片上浮量增大,但与管片错台量的相关性不大。③管片上浮时,管片环间接触摩擦与环间螺栓将起到抗剪作用,控制错台的发展。④减小浆液浮力、增大管片环间连接刚度、增强地层约束、缩短流体段长度可减小施工期管片上浮错台。⑤提出计算错台量的方法可对管片接缝防水设计提供依据。Abstract: In order to analyze the influences of various factors during the construction period of a shield tunnel on the uplifting dislocation of segments, seven influencing factors are proposed according to the mechanical state, including outer diameter of the tunnel, ground condition, cover depth, coagulation time and density of synchronous grouts, shield tunneling speed and shield tail clearance. Numerical models for tunnel uplifting and segment dislocation are established to investigate the dislocation under different influencing factors. Then the variation laws of the segment dislocation are analyzed under the influences of various factors during the construction period. Moreover, the phenomenon and laws of the segment dislocation during shield tunnelling are verified through the test results of on-site monitoring. The main conclusions are as follows: (1) The segment dislocation will be intensified when the ground stiffness weakens, the density of synchronous grout increases, the coagulation time of synchronous grouts grows, the cover depth decreases, the tunneling speed increases, the shield tail clearance increases, and the grout stiffness after solidification decreases. (2) The increase of the tunnel diameter will lead to the increase of the segment uplifting, but has little correlation with the segment dislocation. (3) When the segment is uplifting, the contact friction between the segment rings and the bolt between the rings will play the role of shear resistance to control the dislocation. (4) Decreasing the uplifting force of the grouts, increasing the connection stiffness between the segments and the rings, strengthening the formation constraint and shortening the length of the fluid segment can reduce the segment uplifting dislocation during construction. (5) The proposed method to calculate the amount of dislocation can be used as a reference for the longitudinal waterproof design of segments.
-
Keywords:
- shield tunnel /
- segment lining /
- synchronous grouting /
- tunnel uplifting /
- segment ring dislocation
-
-
表 1 上浮影响因素
Table 1 Influence factors for tunnel uplifting
影响因素 影响特征 地层条件 地层约束管片上浮时的位移 地层条件影响浆液的分布 隧道断面 管片所受浮力与隧道直径呈正相关 隧道断面连接形式、分块形式影响错台发展 隧道埋深 隧道地层环境与埋深相关,一般埋深越大地层条件相对较好 埋深增大上覆荷载、水压、顶推力均发生变化,对从上浮错台造成影响 盾构推力 盾构掘进顶推力直接影响施工期管片环间轴力,直接控制错台大小 管片顶推侧的上下非对称的推力还将导致管片环受到额外的弯矩,导致隧道局部错台增大 浆液性质 浆液密度越大,浮力越大 浆液凝固时间差异导致管片上浮环境变化 浆液凝固后属性导致管片约束差异 掘进速度 掘进速度影响盾构“上浮悬臂效应”范围 掘进速度参数与盾构顶推力(管片轴力)相关,影响管片受力错台 盾尾间隙 盾尾间隙大小可能改变注浆量大小从而影响浆液凝固时间 间隙大小将影响管片上浮时的约束 内部压重 内部压重影响管片受力,阻碍管片上浮过程 注浆质量 浆液不完全包裹管片,局部空腔等会导致上浮错台产生更多不可控变化 表 2 盾构隧道施工期上浮计算工况表
Table 2 Calculation cases of segment ring uplifting during shield tunnelling
工况编号 隧道直径/m 衬砌厚度/cm 混凝土参数 地层类型 浆液密度/(kg·m-³) 浆液凝固时间t’/h 埋深/m 掘进速度v/(h·m-1) 管片壁后间隙/cm 浆液凝固后刚度/(MPa·m-1) 1 6.2 35 C50 粉质黏土 1800 12 20 2 15 15 2 10.8 50 C50 粉质黏土 1800 12 20 2 15 15 3 14.5 60 C60 粉质黏土 1800 12 20 2 15 15 4 15.2 65 C60 粉质黏土 1800 12 20 2 15 15 5 14.5 60 C60 板岩 1800 12 20 2 15 15 6 14.5 60 C60 泥岩 1800 12 20 2 15 15 7 14.5 60 C60 卵石土 1800 12 20 2 15 15 8 14.5 60 C60 砾砂 1800 12 20 2 15 15 9 14.5 60 C60 中砂 1800 12 20 2 15 15 10 14.5 60 C60 粉质黏土 1600 12 20 2 15 15 11 14.5 60 C60 粉质黏土 2000 12 20 2 15 15 12 14.5 60 C60 粉质黏土 1800 8 20 2 15 15 13 14.5 60 C60 粉质黏土 1800 10 20 2 15 15 14 14.5 60 C60 粉质黏土 1800 14 20 2 15 15 15 14.5 60 C60 粉质黏土 1800 16 20 2 15 15 16 14.5 60 C60 粉质黏土 1800 12 10 2 15 15 17 14.5 60 C60 粉质黏土 1800 12 30 2 15 15 18 14.5 60 C60 粉质黏土 1800 12 40 2 15 15 19 14.5 60 C60 粉质黏土 1800 12 50 2 15 15 20 14.5 60 C60 粉质黏土 1800 12 20 3 15 15 21 14.5 60 C60 粉质黏土 1800 12 20 4 15 15 22 14.5 60 C60 粉质黏土 1800 12 20 2 10 15 23 14.5 60 C60 粉质黏土 1800 12 20 2 20 15 24 14.5 60 C60 粉质黏土 1800 12 20 2 15 10 25 14.5 60 C60 粉质黏土 1800 12 20 2 15 20 注:表 2中各地层及材料参数可见表 3所示。 表 3 相关材料物理力学参数表
Table 3 Physical and mechanical parameters of related materials
材料名称 密度/(kg·m-³) 泊松比ν 垂直基床系数/(MPa·m-1) 粉质黏土 1950 0.35 10 板岩 2500 0.21 180 泥岩 2470 0.29 65 卵石土 2100 0.23 35 砾砂 1940 0.40 15 中砂 1910 0.40 8 C50混凝土 2500 0.20 — C60混凝土 2600 0.20 — 表 4 相关盾构隧道设计参数表
Table 4 Relevant design parameters for shield tunnel
外直径/m 混凝土 管片厚度/m 管片环间连接 螺栓数量 6.2 C50 0.35 8.8级M27螺栓 10 10.8 C50 0.50 8.8级M30螺栓 22 14.5 C60 0.60 8.8级M30螺栓+凹凸榫 56 15.2 C60 0.65 8.8级M30螺栓+凹凸榫 28 -
[1] 周明军. 盾构隧道中管片结构纵向错台的研究[J]. 铁道建筑, 2008, 48(12): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200812019.htm ZHOU Mingjun. Study on longitudinal dislocation of segment structure in shield tunnel[J]. Railway Engineering, 2008, 48(12): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200812019.htm
[2] 李宇杰, 何平, 秦东平. 盾构隧道管片纵缝错台的影响分析[J]. 工程力学, 2012, 29(11): 277-282. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211043.htm LI Yujie, HE Ping, QIN Dongping. Influence analysis on longitudinal dislocation for shield tunnel segment[J]. Engineering Mechanics, 2012, 29(11): 277-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211043.htm
[3] 封坤, 谢宏明, 肖明清, 等. 盾构隧道管片接缝密封垫区域平衡优化方法[J]. 中国公路学报, 2022, 35(7): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207015.htm FENG Kun, XIE Hongming, XIAO Mingqing, et al. A regional balanced optimal method for segment gasket of shield tunnels[J]. China Journal of Highway and Transport, 2022, 35(7): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207015.htm
[4] 张治国, 程志翔, 张孟喜, 等. 考虑衬砌渗透性的盾构下穿既有隧道纵向结构错台变形研究[J]. 中国公路学报, 2022, 35(11): 180-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211017.htm ZHANG Zhiguo, CHENG Zhixiang, ZHANG Mengxi, et al. Dislocation deformation of existing longitudinal tunnel structure induced by shield tunneling by under-crossing considering influence of lining permeability[J]. China Journal of Highway and Transport, 2022, 35(11): 180-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211017.htm
[5] 陈俊生, 莫海鸿. 盾构隧道管片施工阶段力学行为的三维有限元分析[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3482-3489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2020.htm CHEN Junsheng, MO Haihong. Three- dimensional finite element analysis of mechanical behaviors of shield tunnel segment during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3482-3489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2020.htm
[6] 梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm LIANG Yu, YANG Junsheng, LIN Hui. On segment floating and relevant mechanical behaviors during large diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm
[7] 舒瑶, 周顺华, 季昌, 等. 多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm SHU Yao, ZHOU Shunhua, JI Chang, et al. Analysis of shield tunnel segment uplift data and uplift value forecast during tunnel construction in variable composite formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3464-3474. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm
[8] 季昌, 周顺华, 许恺, 等. 盾构隧道管片施工期上浮影响因素的现场试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3619-3626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2079.htm JI Chang, ZHOU Shunhua, XU Kai, et al. Field test research on influence factor of upward moving of shield tunnel segments during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3619-3626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2079.htm
[9] 朱令, 丁文其, 杨波. 壁后注浆引起盾构隧道上浮对结构的影响[J]. 岩石力学与工程学报, 2012, 31(S1): 3377-3382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm ZHU Ling, DING Wenqi, YANG Bo. Effect of shield tunnel uplift caused by back-filled grouting on structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3377-3382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm
[10] 艾国平, 陈刚, 刘维正, 等. 富水硬岩地层盾构管片上浮机理及控制对策[J]. 现代交通技术, 2021, 18(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ202104015.htm AI Guoping, CHEN Gang, LIU Weizheng, et al. Floating mechanism and control countermeasures of shield segment in water-rich hard rock formation[J]. Modern Transportation Technology, 2021, 18(4): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ202104015.htm
[11] 李强, 甘鹏路, 钟小春. 盾构隧道管片壁后注浆厚度对隧道抗浮影响研究[J]. 现代隧道技术, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm LI Qiang, GAN Penglu, ZHONG Xiaochun. Study on effect of backfilling grouting thickness on anti-floating of the shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(6): 27-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm
[12] 李明宇, 余刘成, 陈健, 等. 粉质黏土中大直径泥水盾构隧道管片上浮及错台现场测试分析[J]. 铁道科学与工程学报, 2022, 19(6): 1705-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206025.htm LI Mingyu, YU Liucheng, CHEN Jian, et al. In situ test analysis of segment uplift and dislocation of large-diameter slurry shield tunnel in silty clay[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1705-1715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206025.htm
[13] (日本)土木学会. 隧道标准规范(盾构篇)及解说[M]. 朱伟, 译. 北京: 中国建筑工业出版社, 2001. Japanese Society of Civil Engineering. Tunnel Standard Specification (Shield Tunnel Section) and Explaination[M]. ZHU Wei, Tran. Beijing: China Architecture & Building Press, 2001. (in Chinese)
[14] XIAO M Q, FENG K, ZHNAG Y, et al. Analysis of segment dislocation caused by grout buoyancy during synchronous grouting of shield tunnels[J]. Tunnel Construction, 2021, 41(12): 2048-2057.
[15] 舒瑶, 季昌, 周顺华, 等. 考虑地层渗透性的盾构隧道施工期管片上浮预测[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm SHU Yao, JI Chang, ZHOU Shunhua, et al. Prediction for shield tunnel segment uplift considering the effect of stratum permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3516-3524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm
[16] 丁宇能. 盾构隧道壁后注浆材料物理力学性质试验研究[D]. 南京: 东南大学, 2017. DING Yuneng. Experimental Study on Physical-Mechanical Behavior of Backfill Groutng Material in Shield Tunneling[D]. Nanjing: Southeast University, 2017. (in Chinese)
-
期刊类型引用(8)
1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 . 百度学术
2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 . 百度学术
3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 . 百度学术
4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 . 百度学术
5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 . 百度学术
6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 . 百度学术
7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 . 百度学术
8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 . 百度学术
其他类型引用(8)
-
其他相关附件
-
本文英文pdf
20230704-G22-0462英文发布稿 点击下载(1089KB)
-