• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

微生物加固钙质砂地基动力响应特性研究

肖鹏, 刘汉龙, 史金权, 何想, 楚剑, 肖杨

肖鹏, 刘汉龙, 史金权, 何想, 楚剑, 肖杨. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
引用本文: 肖鹏, 刘汉龙, 史金权, 何想, 楚剑, 肖杨. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
XIAO Peng, LIU Hanlong, SHI Jinquan, HE Xiang, CHU Jian, XIAO Yang. Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
Citation: XIAO Peng, LIU Hanlong, SHI Jinquan, HE Xiang, CHU Jian, XIAO Yang. Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455

微生物加固钙质砂地基动力响应特性研究  English Version

基金项目: 

国家自然科学基金优秀青年项目 51922024

国家自然科学基金面上项目 52078085

重庆英才计划优秀科学家项目 cstc2021ycjh-bgzxm0051

详细信息
    作者简介:

    肖鹏(1990—),男,博士,高级工程师,主要从事铁路工程、地基处理等方面的科研及管理工作。E-mail: xpcqdx2012@163.com

    通讯作者:

    肖杨, E-mail:hhuxyanson@163.com

  • 中图分类号: TU43

Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation

  • 摘要: 微生物加固技术是一种有效提高土体强度、抑制土体发生液化破坏的绿色环保加固技术。采用温控微生物加固法对南海钙质砂地基模型进行微生物加固处理,并开展了一系列模型振动台试验研究,系统讨论了微生物加固程度和土体深度对微生物加固钙质砂地基的动应力应变关系、剪切模量、剪切波速以及动强度等动力特性的影响。试验研究表明微生物加固对钙质砂地基的动力学特性影响十分显著,具体表现在:随着微生物加固程度的提高,动剪应变显著降低,滞回圈骨干曲线的斜率逐渐增大,滞回圈面积和土体能量的耗散逐渐减小;动剪切模量随着加固程度的提高而增大,但增大幅度逐渐降低;深部土体的剪切模量衰减要高于上部土体;剪切波速值随着微生物加固程度的提高而显著提高,振动后的土体剪切波速值要高于振动前。动三轴试验获得的统一动强度方程,通过折减系数进行修正处理,可在一定程度上模拟振动台试验所获得的微生物加固钙质砂动强度发展规律。
    Abstract: The microbially induced calcite precipitation (MICP) is a green and ecofriendly technique to efficiently improve soil strength and mitigate liquefaction potential of soil. In this study, the temperature-controlled MICP method is used to reinforce the foundation model made with the calcareous sand from the South China Sea. A series of shaking table tests are performed to investigate the effects of biocementation level and soil depth on the dynamic stress-strain relationship, shear modulus, shear wave velocity and dynamic strength of the MICP-treated calcareous sand foundation. The test results show that the MICP can affect the dynamic response of the calcareous sand foundation significantly, indicating that with the increase of the biotreatment level, the dynamic shear strain decreases significantly; the area of stress-strain hysteresis ring and the energy dissipation decrease; the dynamic shear modulus increases with the decrease of increment amplitude; the shear modulus degradation at a larger depth is higher than that at a lower depth. The shear wave velocity increases with the biocementation level and becomes higher after shaking. The dynamic strength equation for the biotreated soil models from the triaxial cyclic loading tests, multiplying a reduction coefficient, can be used to simulate the dynamic soil strength of the MICP-treated calcareous sand foundation in the shaking table tests.
  • 全球性的气候问题与突发自然灾害使得岩土及地下工程灾变问题不断凸现,给岩土工程安全与运营构成巨大挑战。岩土体作为地球表面最为广泛存在的地质材料具有复杂的物理力学特性与显著的时空变异性。岩土工程物理模拟试验技术通过融合多学科知识模拟和再现岩土体在自然与工程状态下的物理力学行为,为复杂岩土工程问题的解决提供强力支撑。“交通强国”等重大国家战略的实施也给岩土工程带来了巨大的历史机遇。岩土工程防灾减灾问题由于其普遍性、迫切性和前沿性也成为岩土及地下工程领域研究的新热点。随着科技的进步,岩土工程物理模拟试验技术也正从传统的重力场模拟、离心试验,向数字与智能化转变,而世界级超大型试验设备的建设,更将极大驱动我国岩土工程物理模拟试验技术的未来发展。

    为促进我国岩土工程物理模拟试验技术学术交流,由中国水利学会岩土力学专业委员会和中国土木工程学会土力学及岩土工程分会共同主办,交通运输部天津水运工程科学研究院、南京水利科学研究院、中交天津港湾工程研究院有限公司以及天津大学承办的第十届岩土工程物理模拟学术研讨会于2024年8月在天津市滨海新区举行。本届会议是继武汉(2011年)、杭州(2013)、北京(2017)、喀什(2023)会议后全国岩土工程物理模拟试验技术领域的又一次学术盛会。会议筹备期间共收到投稿论文113篇,经过审稿委员会的审议向《岩土工程学报》(增刊)推荐稿件51篇,并在学报2024年增刊1专刊出版。同时,本届研讨会举办了砂土场地桩基水平承载力平行试验,并以特邀报告、主题报告、青年学者报告等在内的形式开展广泛深入的交流,展现最新模拟技术和研究成果,探讨岩土工程物理模拟试验技术在交通强国基础设施建设与防灾减灾研究中的应用,以促进岩土工程物理模拟试验技术对我国重大战略和重大工程的技术支撑作用。

    感谢对本届会议召开鼎力相助的交通运输部天津水运工程科学研究院及各有关单位,感谢向本届会议投稿的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。

    第十届全国岩土工程物理模拟学术研讨会组委会

  • 图  1   滤波频率对应力应变关系曲线的影响

    Figure  1.   Effects of filter frequency on stress-strain hysteresis loops

    图  2   不同微生物加固程度对应力应变关系曲线的影响

    Figure  2.   Effects of biotreated level on dynamic stress-strain relation

    图  3   不同微生物加固程度模型地基在不同深度动剪应力-应变关系

    Figure  3.   Dynamic shear stress-strain relation of ground models with different biotreated levels at different depths

    图  4   不同微生物加固程度模型地基剪切模量衰减规律

    Figure  4.   Degradation of shear modulus for ground models with different biotreatments

    图  5   微生物加固程度对剪切模量大小的影响

    Figure  5.   Effects of biotreated level on shear modulus

    图  6   不同微生物加固程度模型地基在不同深度处剪切模量衰减规律

    Figure  6.   Degradation of shear modulus for ground models with different biotreated levels at different depths

    图  7   不同微生物加固程度模型地基剪切波速变化规律

    Figure  7.   Evolution of shear wave velocity for ground models with different biotreatment levels

    图  8   不同微生物加固程度模型地基CSR-Nf关系

    Figure  8.   Relationship between CSR and Nf for bio-ground models with different biotreated levels

    图  9   考虑加固次数的统一动强度方程与微生物加固地基模型动强度比较

    Figure  9.   Comparison between unified dynamic strength considering biotreating cycles and strength from bio-ground models

  • [1]

    WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1/2/3/4): 40-47. http://www.onacademic.com/detail/journal_1000034075073310_47e1.html

    [2]

    XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141

    [3]

    SINGH S C, CARTON H, TAPPONNIER P, et al. Seismic evidence for broken oceanic crust in the 2004 sumatra earthquake epicentral region[J]. Nature Geoscience, 2008, 1(11): 777-781. doi: 10.1038/ngeo336

    [4] 胡进军, 郝彦春, 谢礼立. 潜在地震对我国南海开发和建设影响的初步考虑[J]. 地震工程学报, 2014, 36(3): 616-621. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403031.htm

    HU Jinjun, HAO Yanchun, XIE Lili. Effects of potential earthquakes on construction and development in South China Sea region[J]. China Earthquake Engineering Journal, 2014, 36(3): 616-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403031.htm

    [5]

    VAHDANI S, PYKE R, SIRIPRUSANEN UJTRN. Liquefaction of Calcareous Sands and Lateral Spreading Experienced in Guam as A Result of the 1993 Guam Earthquake[C]// 5th US- Japan workshop on Earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction, Snowbird Utah, 1994: 117-123.

    [6]

    SEED HB, IDRISS IM. Soil Moduli and Damping Factors for Dynamic Response Analysis[R]. Berkeley: Earthquake Engineering Research Center (EERC), 1970.

    [7] 高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    GAO Ran, YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    [8] 马维嘉, 陈国兴, 秦悠, 等. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验[J]. 岩土工程学报, 2020, 42(3): 592-600. doi: 10.11779/CJGE202003022

    MA Weijia, CHEN Guoxing, QIN You, et al. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. (in Chinese) doi: 10.11779/CJGE202003022

    [9]

    ZHANG Y L, DING X M, CHEN Z X, et al. Seismic responses of slopes with different angles in coral sand[J]. Journal of Mountain Science, 2021, 18(9): 2475-2485. doi: 10.1007/s11629-020-6546-9

    [10]

    MURFF J D. Pile capacity in calcareous sands: state if the art[J]. Journal of Geotechnical Engineering, 1987, 113(5): 490-507. doi: 10.1061/(ASCE)0733-9410(1987)113:5(490)

    [11]

    WU Q, DING X M, CHEN Z X, et al. Shaking table tests on seismic responses of pile-soil-superstructure in coral sand[J]. Journal of Earthquake Engineering, 2022, 26(7): 3461-3487. doi: 10.1080/13632469.2020.1803160

    [12]

    LIU H X, ZHANG J M, ZHANG X D, et al. Seismic performance of block-type quay walls with liquefiable calcareous sand backfill[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106092. doi: 10.1016/j.soildyn.2020.106092

    [13] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008

    [14] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. doi: 10.11779/CJGE201904017

    PENG Jie, WEN Zhili, LIU Zhiming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) doi: 10.11779/CJGE201904017

    [15] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. doi: 10.11779/CJGE202002008

    GUI Yue, WU Chengkun, LIU Yingshen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) doi: 10.11779/CJGE202002008

    [16] 欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. doi: 10.11779/CJGE202004004

    OU Xiaoduo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) doi: 10.11779/CJGE202004004

    [17] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. doi: 10.11779/CJGE201904010

    XIE Yuehan, TANG Chaosheng, YIN Liyang, et al. Mechanical behavior of microbial-induced calcite precipitation(MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) doi: 10.11779/CJGE201904010

    [18]

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. http://en.cnki.com.cn/Article_en/CJFDTotal-JIAN201901001.htm

    [19]

    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. http://www.researchgate.net/publication/334837170_Unconfined_Compressive_and_Splitting_Tensile_Strength_of_Basalt_Fiber-Reinforced_Biocemented_Sand

    [20]

    XIAO Y, ZHANG Z, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. http://www.nstl.gov.cn/paper_detail.html?id=5abfd949bb8b9a4d39182baeb0a7309f

    [21] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) doi: 10.11779/CJGE201801002

    [22]

    FATTAHI S M, SOROUSH A, HUANG N. Biocementation control of sand against wind erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020045. http://www.researchgate.net/publication/340607105_Biocementation_Control_of_Sand_against_Wind_Erosion

    [23]

    JIANG N J, SOGA K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures[J]. Geotechnique, 2017, 67: 42-55. http://www.onacademic.com/detail/journal_1000039580441110_860b.html

    [24]

    CLARÀ SARACHO A, HAIGH S K, EHSAN JORAT M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand[J]. Géotechnique, 2021, 71(12): 1135-1149. http://www.researchgate.net/publication/342933967_Flume_study_on_the_effects_of_microbial_induced_calcium_carbonate_precipitation_MICP_on_the_erosional_behaviour_of_fine_sand

    [25]

    XIAO P, LIU H L, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9-19. http://www.researchgate.net/profile/Yang_Xiao27/publication/322537057_Liquefaction_resistance_of_bio-cemented_calcareous_sand/links/5a5ea9b0a6fdcc68fa99305a/Liquefaction-resistance-of-bio-cemented-calcareous-sand.pdf

    [26]

    XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573

    [27]

    ZHANG X L, CHEN Y M, LIU H L, et al. Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105959. http://www.sciencedirect.com/science/article/pii/S0267726119306281

    [28] 肖鹏. 微生物温控加固钙质砂动力与液化特性研究[D]. 重庆: 重庆大学, 2020.

    XIAO Peng. Study on Dynamic and Liquefaction Charcteristics of Temperature Controlled MICP-Treated Calcareous Sand[D]. Chongqing: Chongqing University, 2020. (in Chinese)

    [29]

    PRASAD S, TOWHATA I, CHANDRADHARA G P, et al. Shaking table tests in earthquake geotechnical engineering[J]. Current Science, 2004, 87: 1398-1404. http://www.nstl.gov.cn/paper_detail.html?id=37706bab806aa8423f61c9fca70631ae

    [30]

    TSUKAMOTO Y, ISHIHARA K, SAWADA S, et al. Settlement of rigid circular foundations during seismic shaking in shaking table tests[J]. International Journal of Geomechanics, 2012, 12(4): 462-470.

    [31]

    DARBY K M, BOULANGER R W, DEJONG J T, et al. Progressive changes in liquefaction and cone penetration resistance across multiple shaking events in centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(3): 04018112. http://www.xueshufan.com/publication/2908166530

    [32]

    TURAN A, HINCHBERGER S D, EL NAGGAR H. Design and commissioning of a laminar soil container for use on small shaking tables[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2): 404-414. http://www.sciencedirect.com/science/article/pii/S0267726108000584

    [33]

    KOGA Y, MATSUO O. Shaking table tests of embankments resting on liquefiable sandy ground[J]. Soils and Foundations, 1990, 30(4): 162-174. http://www.onacademic.com/detail/journal_1000039882878110_82e5.html

    [34]

    MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f94d6a520c012ed5cd3e532fa707b176

    [35]

    AFACAN K B, BRANDENBERG S J, STEWART J P. Centrifuge modeling studies of site response in soft clay over wide strain range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013003.

    [36]

    FENG K, MONTOYA BM. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b35ac2ea3a19d5c35aa8fa22eea2c772

    [37]

    CONLEE C T, GALLAGHER P M, BOULANGER R W, et al. Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1334-1345.

    [38]

    DIHORU L, BHATTACHARYA S, MOCCIA F, et al. Dynamic testing of free field response in stratified granular deposits[J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 157-168. http://www.researchgate.net/profile/Luiza_Dihoru/publication/298710335_Dynamic_testing_of_free_field_response_in_stratified_granular_deposits/links/573301d708aea45ee838d3a8.pdf

    [39]

    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. http://www.researchgate.net/profile/Bobby_Hardin/publication/247509918_Shear_Modulus_and_Damping_in_Soils_Design_Equations_and_Curves/links/5762f0ab08aecb4f6fee03a0/Shear-Modulus-and-Damping-in-Soils-Design-Equations-and-Curves.pdf

    [40]

    WANG K, BRENNAN A. Behaviour of saturated fibre- reinforced sand in centrifuge model tests[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105749. http://www.xueshufan.com/publication/2953448460

    [41]

    ELGAMAL A, YANG Z H, LAI T, et al. Dynamic response of saturated dense sand in laminated centrifuge container[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 598-609. http://www.researchgate.net/profile/Bruce_Kutter/publication/238179978_Dynamic_Response_of_Saturated_Dense_Sand_in_Laminated_Centrifuge_Container/links/55598dd608aeaaff3bf99f8b.pdf

    [42] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. doi: 10.11779/CJGE202006005

    ZHANG Xinlei, CHEN Yumin, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) doi: 10.11779/CJGE202006005

    [43] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm

    LIU Hanlong, MA Guoliang, XIAO Yang, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Journal of Ground Improvement, 2019, 1(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm

    [44]

    VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. http://www.researchgate.net/profile/Mark_Van_Loosdrecht/publication/221932480_Quantifying_biomediated_ground_improvement_by_ureolysis_Large-scale_biogrout_experiment/links/5640dda608ae24cd3e40b8c4.pdf

  • 其他相关附件

图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回