Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation
-
摘要: 微生物加固技术是一种有效提高土体强度、抑制土体发生液化破坏的绿色环保加固技术。采用温控微生物加固法对南海钙质砂地基模型进行微生物加固处理,并开展了一系列模型振动台试验研究,系统讨论了微生物加固程度和土体深度对微生物加固钙质砂地基的动应力应变关系、剪切模量、剪切波速以及动强度等动力特性的影响。试验研究表明微生物加固对钙质砂地基的动力学特性影响十分显著,具体表现在:随着微生物加固程度的提高,动剪应变显著降低,滞回圈骨干曲线的斜率逐渐增大,滞回圈面积和土体能量的耗散逐渐减小;动剪切模量随着加固程度的提高而增大,但增大幅度逐渐降低;深部土体的剪切模量衰减要高于上部土体;剪切波速值随着微生物加固程度的提高而显著提高,振动后的土体剪切波速值要高于振动前。动三轴试验获得的统一动强度方程,通过折减系数进行修正处理,可在一定程度上模拟振动台试验所获得的微生物加固钙质砂动强度发展规律。Abstract: The microbially induced calcite precipitation (MICP) is a green and ecofriendly technique to efficiently improve soil strength and mitigate liquefaction potential of soil. In this study, the temperature-controlled MICP method is used to reinforce the foundation model made with the calcareous sand from the South China Sea. A series of shaking table tests are performed to investigate the effects of biocementation level and soil depth on the dynamic stress-strain relationship, shear modulus, shear wave velocity and dynamic strength of the MICP-treated calcareous sand foundation. The test results show that the MICP can affect the dynamic response of the calcareous sand foundation significantly, indicating that with the increase of the biotreatment level, the dynamic shear strain decreases significantly; the area of stress-strain hysteresis ring and the energy dissipation decrease; the dynamic shear modulus increases with the decrease of increment amplitude; the shear modulus degradation at a larger depth is higher than that at a lower depth. The shear wave velocity increases with the biocementation level and becomes higher after shaking. The dynamic strength equation for the biotreated soil models from the triaxial cyclic loading tests, multiplying a reduction coefficient, can be used to simulate the dynamic soil strength of the MICP-treated calcareous sand foundation in the shaking table tests.
-
Keywords:
- biotreatment /
- calcareous sand /
- dynamic response /
- dynamic strength /
- shaking table test
-
-
-
[1] WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1/2/3/4): 40-47. http://www.onacademic.com/detail/journal_1000034075073310_47e1.html
[2] XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
[3] SINGH S C, CARTON H, TAPPONNIER P, et al. Seismic evidence for broken oceanic crust in the 2004 sumatra earthquake epicentral region[J]. Nature Geoscience, 2008, 1(11): 777-781. doi: 10.1038/ngeo336
[4] 胡进军, 郝彦春, 谢礼立. 潜在地震对我国南海开发和建设影响的初步考虑[J]. 地震工程学报, 2014, 36(3): 616-621. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403031.htm HU Jinjun, HAO Yanchun, XIE Lili. Effects of potential earthquakes on construction and development in South China Sea region[J]. China Earthquake Engineering Journal, 2014, 36(3): 616-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403031.htm
[5] VAHDANI S, PYKE R, SIRIPRUSANEN UJTRN. Liquefaction of Calcareous Sands and Lateral Spreading Experienced in Guam as A Result of the 1993 Guam Earthquake[C]// 5th US- Japan workshop on Earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction, Snowbird Utah, 1994: 117-123.
[6] SEED HB, IDRISS IM. Soil Moduli and Damping Factors for Dynamic Response Analysis[R]. Berkeley: Earthquake Engineering Research Center (EERC), 1970.
[7] 高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm GAO Ran, YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
[8] 马维嘉, 陈国兴, 秦悠, 等. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验[J]. 岩土工程学报, 2020, 42(3): 592-600. doi: 10.11779/CJGE202003022 MA Weijia, CHEN Guoxing, QIN You, et al. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. (in Chinese) doi: 10.11779/CJGE202003022
[9] ZHANG Y L, DING X M, CHEN Z X, et al. Seismic responses of slopes with different angles in coral sand[J]. Journal of Mountain Science, 2021, 18(9): 2475-2485. doi: 10.1007/s11629-020-6546-9
[10] MURFF J D. Pile capacity in calcareous sands: state if the art[J]. Journal of Geotechnical Engineering, 1987, 113(5): 490-507. doi: 10.1061/(ASCE)0733-9410(1987)113:5(490)
[11] WU Q, DING X M, CHEN Z X, et al. Shaking table tests on seismic responses of pile-soil-superstructure in coral sand[J]. Journal of Earthquake Engineering, 2022, 26(7): 3461-3487. doi: 10.1080/13632469.2020.1803160
[12] LIU H X, ZHANG J M, ZHANG X D, et al. Seismic performance of block-type quay walls with liquefiable calcareous sand backfill[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106092. doi: 10.1016/j.soildyn.2020.106092
[13] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008 HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
[14] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. doi: 10.11779/CJGE201904017 PENG Jie, WEN Zhili, LIU Zhiming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) doi: 10.11779/CJGE201904017
[15] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. doi: 10.11779/CJGE202002008 GUI Yue, WU Chengkun, LIU Yingshen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) doi: 10.11779/CJGE202002008
[16] 欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. doi: 10.11779/CJGE202004004 OU Xiaoduo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) doi: 10.11779/CJGE202004004
[17] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. doi: 10.11779/CJGE201904010 XIE Yuehan, TANG Chaosheng, YIN Liyang, et al. Mechanical behavior of microbial-induced calcite precipitation(MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) doi: 10.11779/CJGE201904010
[18] LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. http://en.cnki.com.cn/Article_en/CJFDTotal-JIAN201901001.htm
[19] XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. http://www.researchgate.net/publication/334837170_Unconfined_Compressive_and_Splitting_Tensile_Strength_of_Basalt_Fiber-Reinforced_Biocemented_Sand
[20] XIAO Y, ZHANG Z, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. http://www.nstl.gov.cn/paper_detail.html?id=5abfd949bb8b9a4d39182baeb0a7309f
[21] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002 LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) doi: 10.11779/CJGE201801002
[22] FATTAHI S M, SOROUSH A, HUANG N. Biocementation control of sand against wind erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020045. http://www.researchgate.net/publication/340607105_Biocementation_Control_of_Sand_against_Wind_Erosion
[23] JIANG N J, SOGA K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures[J]. Geotechnique, 2017, 67: 42-55. http://www.onacademic.com/detail/journal_1000039580441110_860b.html
[24] CLARÀ SARACHO A, HAIGH S K, EHSAN JORAT M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand[J]. Géotechnique, 2021, 71(12): 1135-1149. http://www.researchgate.net/publication/342933967_Flume_study_on_the_effects_of_microbial_induced_calcium_carbonate_precipitation_MICP_on_the_erosional_behaviour_of_fine_sand
[25] XIAO P, LIU H L, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9-19. http://www.researchgate.net/profile/Yang_Xiao27/publication/322537057_Liquefaction_resistance_of_bio-cemented_calcareous_sand/links/5a5ea9b0a6fdcc68fa99305a/Liquefaction-resistance-of-bio-cemented-calcareous-sand.pdf
[26] XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
[27] ZHANG X L, CHEN Y M, LIU H L, et al. Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105959. http://www.sciencedirect.com/science/article/pii/S0267726119306281
[28] 肖鹏. 微生物温控加固钙质砂动力与液化特性研究[D]. 重庆: 重庆大学, 2020. XIAO Peng. Study on Dynamic and Liquefaction Charcteristics of Temperature Controlled MICP-Treated Calcareous Sand[D]. Chongqing: Chongqing University, 2020. (in Chinese)
[29] PRASAD S, TOWHATA I, CHANDRADHARA G P, et al. Shaking table tests in earthquake geotechnical engineering[J]. Current Science, 2004, 87: 1398-1404. http://www.nstl.gov.cn/paper_detail.html?id=37706bab806aa8423f61c9fca70631ae
[30] TSUKAMOTO Y, ISHIHARA K, SAWADA S, et al. Settlement of rigid circular foundations during seismic shaking in shaking table tests[J]. International Journal of Geomechanics, 2012, 12(4): 462-470.
[31] DARBY K M, BOULANGER R W, DEJONG J T, et al. Progressive changes in liquefaction and cone penetration resistance across multiple shaking events in centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(3): 04018112. http://www.xueshufan.com/publication/2908166530
[32] TURAN A, HINCHBERGER S D, EL NAGGAR H. Design and commissioning of a laminar soil container for use on small shaking tables[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2): 404-414. http://www.sciencedirect.com/science/article/pii/S0267726108000584
[33] KOGA Y, MATSUO O. Shaking table tests of embankments resting on liquefiable sandy ground[J]. Soils and Foundations, 1990, 30(4): 162-174. http://www.onacademic.com/detail/journal_1000039882878110_82e5.html
[34] MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f94d6a520c012ed5cd3e532fa707b176
[35] AFACAN K B, BRANDENBERG S J, STEWART J P. Centrifuge modeling studies of site response in soft clay over wide strain range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013003.
[36] FENG K, MONTOYA BM. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b35ac2ea3a19d5c35aa8fa22eea2c772
[37] CONLEE C T, GALLAGHER P M, BOULANGER R W, et al. Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1334-1345.
[38] DIHORU L, BHATTACHARYA S, MOCCIA F, et al. Dynamic testing of free field response in stratified granular deposits[J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 157-168. http://www.researchgate.net/profile/Luiza_Dihoru/publication/298710335_Dynamic_testing_of_free_field_response_in_stratified_granular_deposits/links/573301d708aea45ee838d3a8.pdf
[39] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. http://www.researchgate.net/profile/Bobby_Hardin/publication/247509918_Shear_Modulus_and_Damping_in_Soils_Design_Equations_and_Curves/links/5762f0ab08aecb4f6fee03a0/Shear-Modulus-and-Damping-in-Soils-Design-Equations-and-Curves.pdf
[40] WANG K, BRENNAN A. Behaviour of saturated fibre- reinforced sand in centrifuge model tests[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105749. http://www.xueshufan.com/publication/2953448460
[41] ELGAMAL A, YANG Z H, LAI T, et al. Dynamic response of saturated dense sand in laminated centrifuge container[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 598-609. http://www.researchgate.net/profile/Bruce_Kutter/publication/238179978_Dynamic_Response_of_Saturated_Dense_Sand_in_Laminated_Centrifuge_Container/links/55598dd608aeaaff3bf99f8b.pdf
[42] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. doi: 10.11779/CJGE202006005 ZHANG Xinlei, CHEN Yumin, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) doi: 10.11779/CJGE202006005
[43] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm LIU Hanlong, MA Guoliang, XIAO Yang, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Journal of Ground Improvement, 2019, 1(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
[44] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. http://www.researchgate.net/profile/Mark_Van_Loosdrecht/publication/221932480_Quantifying_biomediated_ground_improvement_by_ureolysis_Large-scale_biogrout_experiment/links/5640dda608ae24cd3e40b8c4.pdf
-
期刊类型引用(9)
1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
其他类型引用(14)
-
其他相关附件