Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和砂土坝基液化超重力振动台试验研究

杨凯文, 李俊超, 王锋, 陈涛, 汪玉冰, 邹德高, 刘京茂

杨凯文, 李俊超, 王锋, 陈涛, 汪玉冰, 邹德高, 刘京茂. 饱和砂土坝基液化超重力振动台试验研究[J]. 岩土工程学报, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022
引用本文: 杨凯文, 李俊超, 王锋, 陈涛, 汪玉冰, 邹德高, 刘京茂. 饱和砂土坝基液化超重力振动台试验研究[J]. 岩土工程学报, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022
YANG Kai-wen, LI Jun-chao, WANG Feng, CHEN Tao, WANG Yu-bing, ZOU De-gao, LIU Jing-mao. Centrifugal shaking table tests on saturated sand foundation under dam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022
Citation: YANG Kai-wen, LI Jun-chao, WANG Feng, CHEN Tao, WANG Yu-bing, ZOU De-gao, LIU Jing-mao. Centrifugal shaking table tests on saturated sand foundation under dam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022

饱和砂土坝基液化超重力振动台试验研究  English Version

基金项目: 

国家自然科学基金青年科学基金项目 51808490

详细信息
    作者简介:

    杨凯文(1996—),男,博士研究生,主要从事地基动力响应和桩土动力相互作用等方面的研究。E-mail:12012001@zju.edu.cn

    通讯作者:

    汪玉冰, E-mail: wangyubing@zju.edu.cn

  • 中图分类号: TU435

Centrifugal shaking table tests on saturated sand foundation under dam

  • 摘要: 坝基作为水利水电工程重要基础设施的核心部分,其在地震作用下的动力响应和稳定性受到广泛关注。针对饱和砂土坝基的动力响应和液化规律,开展了两组超重力振动台试验,分析了饱和砂土地基在坝闸荷载作用下的地震响应规律。根据两组离心试验结果,地震作用下自由场地地基下层土体发生软化,上层土体发生液化喷砂,加速度放大系数和超静孔压比沿深度方向呈现先减小后增大的趋势;坝基在荷载边缘的土体中出现液化现象,加速度放大系数随深度逐渐减小而土体超静孔压比随深度逐渐增大。坝闸荷载能够增大坝基土体中的有效应力,减小超静孔压比。超静孔压消散后土体的密实度、刚度提高。最后,基于非线性有限元分析软件GEODYNA,对两组离心机试验进行了数值模拟,结果吻合较好。试验结果和数值模拟结果为饱和砂土坝基的设计与加固提供了依据。
    Abstract: As the core part of the important infrastructure of water conservancy and hydropower projects, the stability of dam foundation under earthquake is widely concerned. In order to solve the problem of the dynamic response and liquefaction law of saturated sand foundation under dam, two groups of centrifugal shaking table tests are carried out to analyze the influences of overlying loads on the seismic response of this foundation. The test results show that when there are no overlying loads on the foundation, the soil in the lower layer is softened during the vibration, while the soil in the upper layer is liquefied during the vibration, and the acceleration magnification factor of the foundation and the excess pore pressure ratio of the soil first decrease and then increase along the depth direction. When the foundation has overlying loads, liquefaction occurs in the soil at the edge of the overlying loads, and the acceleration magnification factor of the foundation increases gradually along the depth direction and the ratio of excess pore water pressure decreases gradually along the depth direction. The existence of overlying loads of dam can increase the effective stress of soil and reduce the excess pore pressure ratio. After the dissipation of excess pore pressure, the compactness and stiffness of soil is improved. Finally, based on the nonlinear finite element software GEODYNA, the numerical simulation of the two centrifuge tests is carried out, and the results are in good agreement. The results of the tests and the numerical simulation provide the basis for the design and reinforcement of the saturated sand dam foundation.
  • 致谢: 感谢浙江大学超重力研究中心朱斌教授、刘庭伟硕士在试验中给予的帮助与指导。
  • 图  1   模型实物图

    Figure  1.   Picture of centrifuge model

    图  2   模型试验中砂土颗粒级配曲线

    Figure  2.   Grain-size distribution curves of sand in model tests

    图  3   原型与模型试验坝下地基附加应力分布示意图

    Figure  3.   Distribution of additional stress of foundation under dam in prototype and model tests

    图  4   传感器布置

    Figure  4.   Layout of sensors

    图  5   成都现场地震波时程曲线

    Figure  5.   Time-history curves of acceleration of Chengdu waves

    图  6   地基土体水平加速度时程曲线

    Figure  6.   Time-history curves of horizontal acceleration of foundation

    图  7   地基水平向加速度放大系数

    Figure  7.   Amplification factor of horizontal acceleration of foundation

    图  8   地基A8处加速度Fourier谱

    Figure  8.   Fourier spectra of point at foundation A8

    图  9   振动前后地基平均剪切波速变化图

    Figure  9.   Variation of average shear-wave velocity of foundation before and after vibration

    图  10   地基振动过程中ru变化曲线

    Figure  10.   Variation of ru in process of vibration

    图  11   震后地基试验现象

    Figure  11.   Experimental phenomena of foundation after earthquake

    图  12   Test 1和Test 2中地基L1处沉降

    Figure  12.   Vertical settlements of point at foundation L1 in Test 1 and Test 2

    图  13   Test 1和Test 2地基有限元模型图

    Figure  13.   Finite element model foundation in Test1 and Test2

    图  14   数值模拟与模型试验加速度时程对比

    Figure  14.   Comparison between simulated and measured time-history curves of acceleration

    图  15   数值模拟与模型试验傅里叶谱对比

    Figure  15.   Comparison between simulated and measured Fourier spectra

    图  16   数值模拟与模型试验孔压时程对比

    Figure  16.   Comparison between simulated and measured time-history curves of pore pressure

    表  1   试验安排

    Table  1   Test arrangement

    试验组别 离心机加速度/g 上层砂土 下层砂土 钢板厚度/mm
    厚度/mm 相对密实度/% 厚度/mm 相对密实度/%
    Test 1 50 100 74 300 63
    Test 2 50 100 74 300 63 106.5
    下载: 导出CSV

    表  2   模型试验中砂土材料基本物理性质

    Table  2   Basic physical properties of sand in model tests

    土层 Gs emax emin ρdmax/(g·cm-3) ρd min/(g·cm-3) k/(cm·s-1) Dr/%
    上层土 2.64 0.711 0.342 1.968 1.544 1.89×10-2 74
    下层土 2.66 1.147 0.527 1.742 1.239 1.001×10-3 63
    下载: 导出CSV

    表  3   施震顺序

    Table  3   Earthquake sequence

    地震序列 波形 加速度峰值/g 采样频率/Hz
    Test 1 Test 2
    1 阶跃波 0.020 20k
    2 成都现场波 0.360 0.400 5k
    3 阶跃波 0.020 20k
    下载: 导出CSV

    表  4   本构模型参数

    Table  4   Parameters of constitutive model

    参数 G0 ν n eτ λc Mg β
    上层土 224 0.1 0.430 0.740 0.078 1.45 0.3
    下层土 224 0.1 0.304 0.651 0.090 1.47 0.1
    参数 h1 h2 m mp α1 α2 ng nb
    上层土 10 1.8 0.25 0.5 0.50 1.00 2.0 2.0
    下层土 40 16.0 0.50 0.5 1.45 0.80 1.0 0.5
    下载: 导出CSV
  • [1] 刘恢先. 唐山大地震震害[M]. 北京: 地震出版社, 1985.

    LIU Hui-xian. Damage of Tangshan Earthquake[M]. Beijing: Seismological Press, 1985. (in Chinese)

    [2] 陈跃庆, 吕西林. 几次大地震中地基基础震害的启示[J]. 工程抗震, 2001, 23(2): 8–15. doi: 10.3969/j.issn.1002-8412.2001.02.002

    CHEN Yue-qing, LÜ Xi-lin. Lessons learned from damages of soils and foundations during several strong earthquakes[J]. Earthquake Resistant Engineering, 2001, 23(2): 8–15. (in Chinese) doi: 10.3969/j.issn.1002-8412.2001.02.002

    [3]

    SEED H B. Landslides during earthquakes due to soil liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(4): 1123.

    [4]

    SEED H B. Soil problems and soil behavior[J]. Earthquake Engineering, 1970(10): 227–251.

    [5]

    MATSUO O. Damage to river dikes[J]. Soils and Foundations, 1996, 36: 235–240. doi: 10.3208/sandf.36.Special_235

    [6]

    TANI S. Behavior of large fill dams during earthquake and earthquake damage[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(1/2/3/4): 223–229.

    [7]

    ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145–156. doi: 10.1016/j.soildyn.2015.03.014

    [8]

    ARULANANDAN K, ANANDARAJAH A, ABGHARI A. Centrifugal modeling of soil liquefaction susceptibility[J]. Journal of Geotechnical Engineering, 1983, 109(3): 281–300. doi: 10.1061/(ASCE)0733-9410(1983)109:3(281)

    [9]

    HUSHMAND B, SCOTT R F, CROUSE C B. Centrifuge liquefaction tests in a laminar box[J]. Géotechnique, 1988, 38(2): 253–262. doi: 10.1680/geot.1988.38.2.253

    [10]

    LAMBE P C, WHITMAN R V. Dynamic centrifugal modeling of a horizontal dry sand layer[J]. Journal of Geotechnical Engineering, 1985, 111(3): 265–287. doi: 10.1061/(ASCE)0733-9410(1985)111:3(265)

    [11] 刘庭伟, 李俊超, 朱斌, 等. 小型土石坝加密抗液化离心机振动台试验研究[J]. 岩土力学, 2020, 41(11): 3695–3704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011021.htm

    LIU Ting-wei, LI Jun-chao, ZHU Bin, et al. Centrifuge shaking table modelling test study on anti-liquefied densification of small earth-rock dam slope[J]. Rock and Soil Mechanics, 2020, 41(11): 3695–3704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011021.htm

    [12]

    SEED H B, MARTIN G R, PYKE R M. Effect of multidirectional shaking on pore pressure development in sands[J]. Journal of the Geotechnical Engineering Division, 1978, 104(1): 27–44. doi: 10.1061/AJGEB6.0000575

    [13] 黄春霞, 张鸿儒, 隋志龙, 等. 饱和砂土地基液化特性振动台试验研究[J]. 岩土工程学报, 2006, 28(12): 2098–2103. doi: 10.3321/j.issn:1000-4548.2006.12.010

    HUANG Chun-xia, ZHANG Hong-ru, SUI Zhi-long, et al. Shaking table tests on liquefaction properties of saturated sand ground[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2098–2103. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.12.010

    [14]

    VARGHESE R M, MADHAVI LATHA G. Shaking table tests to investigate the influence of various factors on the liquefaction resistance of sands[J]. Natural Hazards, 2014, 73(3): 1337–1351. doi: 10.1007/s11069-014-1142-3

    [15] 苏栋, 李相崧. 地震历史对砂土抗液化性能影响的试验研究[J]. 岩土力学, 2006, 27(10): 1815–1818. doi: 10.3969/j.issn.1000-7598.2006.10.035

    SU Dong, LI Xiang-song. Centrifuge investigation on effect of seismic history on resistance of sand to liquefaction[J]. Rock and Soil Mechanics, 2006, 27(10): 1815–1818. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.10.035

    [16] 刘晶波, 刘祥庆, 王宗纲, 等. 砂土地基自由场离心机振动台模型试验[J]. 清华大学学报(自然科学版), 2009, 49(9): 31–34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200909009.htm

    LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang, et al. Dynamic centrifuge model test of an unconfined sandy foundation[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9): 31–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200909009.htm

    [17] 朱建群, 孔令伟, 钟方杰. 粉粒含量对砂土强度特性的影响[J]. 岩土工程学报, 2007, 29(11): 1647–1652. doi: 10.3321/j.issn:1000-4548.2007.11.009

    ZHU Jian-qun, KONG Ling-wei, ZHONG Fang-jie. Effect of fines content on strength of silty sands[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1647–1652. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.11.009

    [18] 周燕国, 梁甜, 李永刚, 等. 含黏粒砂土场地液化离心机振动台试验研究[J]. 岩土工程学报, 2013, 35(9): 1650–1658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309013.htm

    ZHOU Yan-guo, LIANG Tian, LI Yong-gang, et al. Dynamic centrifuge tests on liquefaction of clayey sand ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1650–1658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309013.htm

    [19]

    ADALIER K, ELGAMAL A. Liquefaction of over- consolidated sand: a centrifuge investigation[J]. Journal of Earthquake Engineering, 2005, 9(S1): 127–150.

    [20] 苏栋, 李相菘. 砂土自由场地震响应的离心机试验研究[J]. 地震工程与工程振动, 2006, 26(2): 166–170. doi: 10.3969/j.issn.1000-1301.2006.02.027

    SU Dong, LI Xiang-song. Centrifuge modeling of seismic response of free sand ground[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(2): 166–170. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.02.027

    [21] 蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405–412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405–412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    [22] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887–1894. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm

    CHEN Yun-min, HAN Chao, LING Dao-sheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887–1894. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm

    [23]

    LIU J M, ZOU D G, KONG X J. Three-dimensional scaled memory model for gravelly soils subject to cyclic loading[J]. Journal of Engineering Mechanics, 2018, 144(3): 04018001. doi: 10.1061/(ASCE)EM.1943-7889.0001367

    [24] 伍小平, 孙利民, 胡世德, 等. 振动台试验用层状剪切变形土箱的研制[J]. 同济大学学报(自然科学版), 2002, 30(7): 781–785. doi: 10.3321/j.issn:0253-374X.2002.07.001

    WU Xiao-ping, SUN Li-min, HU Shi-de, et al. Development of laminar shear box used in shaking table test[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 781–785. (in Chinese) doi: 10.3321/j.issn:0253-374X.2002.07.001

  • 期刊类型引用(1)

    1. 王琳琳. 不同围压下三轴试验土体变形特性检测对比研究. 实验室检测. 2025(04): 158-160 . 百度学术

    其他类型引用(0)

图(16)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-05-30
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回