Permeation process of clay under different stresses
-
摘要: 渗透性是黏土的重要工程性质之一,通过渗透系数进行表征,其机理在于水在黏土中的渗透过程。采用研制的刚性壁固结渗透装置,开展9种应力条件下的黏土渗流试验,并运用荧光示踪技术定量分析试样不同位置处的过水率和流道率,以刻画黏土的渗透过程。试验结果表明,试样同一横截面上的过水率变化范围很大,分布很不均匀,水在渗流过程中容易出现优势流道,且优势流道的分布呈随机无规律性;受水力渗透固结的影响,不同横截面上的过水率和流道率也存在差异,靠近水体的土层的参数值最大,沿渗流方向呈递减趋势;黏土的过水率和流道率均随水力梯度的增加而增加、随固结压力的增加而减小,但就影响程度而言,水力梯度较固结压力更显著。Abstract: Permeability is one of the important engineering properties of clay. It is characterized by the permeability coefficient, and its mechanism lies in the permeability process of water in clay. In order to describe the permeation process of clay, the developed rigid wall consolidation infiltration device is used to carry out clay seepage tests under 9 stress conditions. The water transfer rate and flow rate at different positions of the clay are quantitatively analyzed by the fluorescence tracing technique. The results show that the water transfer rate on the same cross section of the sample varies widely, and the distribution is very uneven. The dominant channel is easy to appear in the seepage process, and the distribution of the dominant channel is random and irregular. Under the influences of hydraulic seepage consolidation, there are also differences in permeable rate and flow rate on different cross sections. The parametric value of the soil layer near the water body is the largest and shows a decreasing trend along the seepage direction. The permeable rate and flow rate of clay both increase with the increase of hydraulic gradient and decreases with the increase of consolidation pressure, but the hydraulic gradient is more significant than consolidation pressure in terms of influence degree.
-
Keywords:
- clay /
- permeation process /
- fluorescence tracer /
- permeable rate /
- flow rate
-
-
表 1 试验加载方案
Table 1 Loading schemes of tests
试验编号 固结压力pc/kPa 渗透水压pw/kPa 压力比 T1 100 50 1∶0.5 T2 100 100 1∶1.0 T3 100 150 1∶1.5 T4 200 100 1∶0.5 T5 200 200 1∶1.0 T6 200 300 1∶1.5 T7 300 150 1∶0.5 T8 300 300 1∶1.0 T9 300 450 1∶1.5 表 2 土体物理参数
Table 2 Physical parameters of soil
土颗粒相对质量密度 液限wL/% 塑限wP/% 塑性指数IP 2.68 38.3 19.3 19.0 表 3 黏土粒径的百分含量
Table 3 Percentages of particle size of clay
粒径范围/mm > 1.0 1.0~
0.50.5~
0.250.25~
0.0750.075~
0.005< 0.005 含量/% 0.0 0.5 1.9 3.4 67.3 26.9 表 4 固结后土体的物理参数
Table 4 Physical parameters of soil after consolidation
试验编号 密度ρ/(g·cm-3) 含水率w/% L1 L2 L3 L1 L2 L3 T1 1.97 1.98 1.98 32.3 30.4 29.8 T2 1.98 1.99 1.99 30.5 30.1 29.5 T3 1.98 1.99 2.00 28.9 27.3 26.9 T4 2.00 2.01 2.01 26.2 25.9 25.4 T5 2.00 2.01 2.02 26.1 25.6 25.3 T6 2.01 2.01 2.02 26.0 25.4 25.1 T7 2.01 2.02 2.03 25.5 24.2 23.7 T8 2.02 2.02 2.03 25.3 23.5 23.3 T9 2.04 2.05 2.05 24.1 23.1 23.1 -
[1] MESRI G. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151–158. doi: 10.1346/CCMN.1971.0190303
[2] NAGARAJ T S, PANDIAN N S, NARASHIMHA R P S R. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333–336. doi: 10.1680/geot.1993.43.2.333
[3] 曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286–1292. doi: 10.3969/j.issn.1000-7598.2012.05.002 ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286–1292. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.002
[4] 梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222–1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm LIANG Jian-wei, FANG Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222–1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
[5] 宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635–1641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm SONG Lin-hui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635–1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm
[6] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909–1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909–1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
[7] RENSHAW C E, DADAKIS J S, BROWN S R. Measuring fracture apertures: a comparison of methods[J]. Geophysical Research Letters, 2000, 27(2): 289–292. doi: 10.1029/1999GL008384
[8] 周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977–981. doi: 10.3321/j.issn:1000-4548.2007.07.004 ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977–981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004
[9] 孙强, 刘盛东, 姜春露, 等. 砂岩地层渗流过程非饱和厚度变化的地电测试[J]. 岩土工程学报, 2013, 35(7): 1350–1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm SUN Qiang, LIU Sheng-dong, JIANG Chun-lu, et al. Electric response tests on unsaturated layer thickness in course of seepage of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1350–1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm
[10] 程竹华, 张佳宝, 徐绍辉. 黄淮海平原三种土壤中优势流现象的试验研究[J]. 土壤学报, 1999, 36(2): 154–161. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm CHENG Zhu-hua, ZHANG Jia-bao, XU Shao-hui. Experimental studies on preferential flow in three soils in hunag-Huai-Hai plain[J]. Acta Pedologica Sinica, 1999, 36(2): 154–161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm
[11] 刘目兴, 杜文正. 山地土壤优先流路径的染色示踪研究[J]. 土壤学报, 2013, 50(5): 871–880. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm LIU Mu-xing, DU Wen-zheng. To investigate soil preferential flow paths in mountain area using dye tracer[J]. Acta Pedologica Sinica, 2013, 50(5): 871–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm
[12] BAI B, XU T, GUO Z G. An experimental and theoretical study of the seepage migration of suspended particles with different sizes[J]. Hydrogeology Journal, 2016, 24(8): 2063–2078. doi: 10.1007/s10040-016-1450-7
[13] 张文杰, 严宏罡, 孙铖. 城市生活垃圾中优先流规律的穿透试验研究[J]. 岩土工程学报, 2018, 40(7): 1316–1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316–1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm
[14] BAI B, XU T, LI H W. The semi-analytical solution of particle transport in porous media induced by seepage[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6286–6294.
-
期刊类型引用(7)
1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术
其他类型引用(14)