Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黏土在不同应力条件下的渗透过程分析

宋林辉, 王兴亚, 吴昊宇, 周克发, 梅国雄

宋林辉, 王兴亚, 吴昊宇, 周克发, 梅国雄. 黏土在不同应力条件下的渗透过程分析[J]. 岩土工程学报, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019
引用本文: 宋林辉, 王兴亚, 吴昊宇, 周克发, 梅国雄. 黏土在不同应力条件下的渗透过程分析[J]. 岩土工程学报, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019
SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019
Citation: SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019

黏土在不同应力条件下的渗透过程分析  English Version

基金项目: 

国家自然科学基金项目 51578164

江苏省研究生科研与实践创新计划项目 KYCX20-1061

详细信息
    作者简介:

    宋林辉(1980—),男,博士,副教授,主要从事岩土力学方面的研究工作。E-mail: h27991@163.com

  • 中图分类号: TU433

Permeation process of clay under different stresses

  • 摘要: 渗透性是黏土的重要工程性质之一,通过渗透系数进行表征,其机理在于水在黏土中的渗透过程。采用研制的刚性壁固结渗透装置,开展9种应力条件下的黏土渗流试验,并运用荧光示踪技术定量分析试样不同位置处的过水率和流道率,以刻画黏土的渗透过程。试验结果表明,试样同一横截面上的过水率变化范围很大,分布很不均匀,水在渗流过程中容易出现优势流道,且优势流道的分布呈随机无规律性;受水力渗透固结的影响,不同横截面上的过水率和流道率也存在差异,靠近水体的土层的参数值最大,沿渗流方向呈递减趋势;黏土的过水率和流道率均随水力梯度的增加而增加、随固结压力的增加而减小,但就影响程度而言,水力梯度较固结压力更显著。
    Abstract: Permeability is one of the important engineering properties of clay. It is characterized by the permeability coefficient, and its mechanism lies in the permeability process of water in clay. In order to describe the permeation process of clay, the developed rigid wall consolidation infiltration device is used to carry out clay seepage tests under 9 stress conditions. The water transfer rate and flow rate at different positions of the clay are quantitatively analyzed by the fluorescence tracing technique. The results show that the water transfer rate on the same cross section of the sample varies widely, and the distribution is very uneven. The dominant channel is easy to appear in the seepage process, and the distribution of the dominant channel is random and irregular. Under the influences of hydraulic seepage consolidation, there are also differences in permeable rate and flow rate on different cross sections. The parametric value of the soil layer near the water body is the largest and shows a decreasing trend along the seepage direction. The permeable rate and flow rate of clay both increase with the increase of hydraulic gradient and decreases with the increase of consolidation pressure, but the hydraulic gradient is more significant than consolidation pressure in terms of influence degree.
  • 图  1   渗透测试筒

    Figure  1.   Container of penetration tests

    图  2   试样照片及纵向切割方式

    Figure  2.   Photo of sample and longitudinal cutting method

    图  3   土样横截面切割方式和编号

    Figure  3.   Cutting method and numbering of cross section of soil sample

    图  4   提取荧光剂溶液的照片

    Figure  4.   Photos of extracting fluorescent solution

    图  5   各层土样的过水率分布

    Figure  5.   Distribution of permeable rate of each soil layer

    图  6   优势流道区的分布统计

    Figure  6.   Distribution statistics of dominant channel area

    图  7   过水率均值随高度的变化

    Figure  7.   Variation of average permeable rate with height

    图  8   流道率均值随高度的变化

    Figure  8.   Variation of average flow rate with height

    图  9   L1土层流道率随水力梯度的变化

    Figure  9.   Variation of channel rate of soil layer L1 with hydraulic gradient

    图  10   L2和L3土层流道率随水力梯度的变化

    Figure  10.   Variation of channel rate of soil layers L2 and L3 with hydraulic gradient

    图  11   试样渗透受力图

    Figure  11.   Force diagram of sample seepage in soil

    表  1   试验加载方案

    Table  1   Loading schemes of tests

    试验编号 固结压力pc/kPa 渗透水压pw/kPa 压力比
    T1 100 50 1∶0.5
    T2 100 100 1∶1.0
    T3 100 150 1∶1.5
    T4 200 100 1∶0.5
    T5 200 200 1∶1.0
    T6 200 300 1∶1.5
    T7 300 150 1∶0.5
    T8 300 300 1∶1.0
    T9 300 450 1∶1.5
    下载: 导出CSV

    表  2   土体物理参数

    Table  2   Physical parameters of soil

    土颗粒相对质量密度 液限wL/% 塑限wP/% 塑性指数IP
    2.68 38.3 19.3 19.0
    下载: 导出CSV

    表  3   黏土粒径的百分含量

    Table  3   Percentages of particle size of clay

    粒径范围/mm > 1.0 1.0~
    0.5
    0.5~
    0.25
    0.25~
    0.075
    0.075~
    0.005
    < 0.005
    含量/% 0.0 0.5 1.9 3.4 67.3 26.9
    下载: 导出CSV

    表  4   固结后土体的物理参数

    Table  4   Physical parameters of soil after consolidation

    试验编号 密度ρ/(g·cm-3) 含水率w/%
    L1 L2 L3 L1 L2 L3
    T1 1.97 1.98 1.98 32.3 30.4 29.8
    T2 1.98 1.99 1.99 30.5 30.1 29.5
    T3 1.98 1.99 2.00 28.9 27.3 26.9
    T4 2.00 2.01 2.01 26.2 25.9 25.4
    T5 2.00 2.01 2.02 26.1 25.6 25.3
    T6 2.01 2.01 2.02 26.0 25.4 25.1
    T7 2.01 2.02 2.03 25.5 24.2 23.7
    T8 2.02 2.02 2.03 25.3 23.5 23.3
    T9 2.04 2.05 2.05 24.1 23.1 23.1
    下载: 导出CSV
  • [1]

    MESRI G. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151–158. doi: 10.1346/CCMN.1971.0190303

    [2]

    NAGARAJ T S, PANDIAN N S, NARASHIMHA R P S R. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333–336. doi: 10.1680/geot.1993.43.2.333

    [3] 曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286–1292. doi: 10.3969/j.issn.1000-7598.2012.05.002

    ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286–1292. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.002

    [4] 梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222–1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    LIANG Jian-wei, FANG Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222–1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    [5] 宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635–1641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm

    SONG Lin-hui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635–1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm

    [6] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909–1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm

    DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909–1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm

    [7]

    RENSHAW C E, DADAKIS J S, BROWN S R. Measuring fracture apertures: a comparison of methods[J]. Geophysical Research Letters, 2000, 27(2): 289–292. doi: 10.1029/1999GL008384

    [8] 周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977–981. doi: 10.3321/j.issn:1000-4548.2007.07.004

    ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977–981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004

    [9] 孙强, 刘盛东, 姜春露, 等. 砂岩地层渗流过程非饱和厚度变化的地电测试[J]. 岩土工程学报, 2013, 35(7): 1350–1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm

    SUN Qiang, LIU Sheng-dong, JIANG Chun-lu, et al. Electric response tests on unsaturated layer thickness in course of seepage of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1350–1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm

    [10] 程竹华, 张佳宝, 徐绍辉. 黄淮海平原三种土壤中优势流现象的试验研究[J]. 土壤学报, 1999, 36(2): 154–161. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm

    CHENG Zhu-hua, ZHANG Jia-bao, XU Shao-hui. Experimental studies on preferential flow in three soils in hunag-Huai-Hai plain[J]. Acta Pedologica Sinica, 1999, 36(2): 154–161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm

    [11] 刘目兴, 杜文正. 山地土壤优先流路径的染色示踪研究[J]. 土壤学报, 2013, 50(5): 871–880. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm

    LIU Mu-xing, DU Wen-zheng. To investigate soil preferential flow paths in mountain area using dye tracer[J]. Acta Pedologica Sinica, 2013, 50(5): 871–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm

    [12]

    BAI B, XU T, GUO Z G. An experimental and theoretical study of the seepage migration of suspended particles with different sizes[J]. Hydrogeology Journal, 2016, 24(8): 2063–2078. doi: 10.1007/s10040-016-1450-7

    [13] 张文杰, 严宏罡, 孙铖. 城市生活垃圾中优先流规律的穿透试验研究[J]. 岩土工程学报, 2018, 40(7): 1316–1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm

    ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316–1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm

    [14]

    BAI B, XU T, LI H W. The semi-analytical solution of particle transport in porous media induced by seepage[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6286–6294.

  • 期刊类型引用(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术

    其他类型引用(14)

图(11)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 21
出版历程
  • 收稿日期:  2021-06-14
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回