Development and application of an oedometer with negligible side-wall friction for rockfill materials
-
摘要: 固结仪是研究堆石料长期变形特性最常用的仪器之一,但其应用受到侧壁摩擦力的限制。针对此问题,研制了一种加载稳定、可测量侧壁摩擦力的新型固结仪,介绍了该仪器的结构和工作原理。采用由互不接触的尼龙片组成衬垫贴于固结仪内壁的方法减小侧壁摩擦力。对风干堆石料进行固结试验,系统研究比较了衬垫层数为1~3层和厚度分别为0.3和0.5 mm时该方法的效果。试验结果表明,3层0.5 mm衬垫的效果最优;与无衬垫时相比,该方法下试样侧壁摩擦力平均下降91%,竖向应变是无衬垫时的1.2~1.8倍。将容器内壁覆盖3层0.5 mm衬垫作为减小侧壁摩擦力方法,对风干堆石料分别进行了使用该方法和无衬垫条件下的流变试验。结果表明,微侧壁摩擦力条件下试验结束时试样的竖向应变和次固结系数分别是无衬垫时的2.0和2.2倍。该仪器有效解决了侧壁摩擦力问题,提高了长期变形试验结果的可信性。Abstract: The oedometer is one of the most commonly used apparatuses to investigate the long-term deformation behaviors of rockfill materials. However, the side-wall friction restrains its application. To overcome this limitation, an oedometer that can provide long-term and stable loading and measure the side-wall friction is developed. The main features of the apparatus are presented. To minimize the side-wall friction, the linings that consist of spaced and greased Polyamide plates are used to cover the oedometer wall. The consolidation tests are carried out to evaluate the performance of the anti-friction linings with layers in the range of 1~3 and with layer thickness of 0.3 and 0.5 mm, respectively. The best test results are obtained by using 3 layers of 0.5 mm-thick linings. At the same vertical stress, the side-wall friction is 91% smaller on average while the vertical strain is 20%~80% larger with 3 layers of 0.5 mm-thick anti-friction linings than that without linings. Therefore, the proposed method is chosen to reduce the side-wall friction, and the creep tests are carried out on air-dried rockfill materials. The test results show that the vertical strain at the end of the tests and the coefficient of the secondary consolidation are about 1.0 and 1.2 times larger with 3 layers of 0.5 mm-thick linings than those without linings. The apparatus substantially reduces the side-wall friction and improves the accuracy of creep test results.
-
Keywords:
- rockfill material /
- negligible side-wall friction /
- oedometer /
- lining /
- creep test
-
-
-
[1] 郭万里, 朱俊高, 王俊杰, 等. 粗粒土静力特性及室内测试技术研究进展[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3570–3585. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2035.htm GUO Wan-li, ZHU Jun-gao, WANG Jun-jie, et al. Research progress on static properties and laboratory testing technology of coarse-grained soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3570–3585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2035.htm
[2] 朱文君, 张宗亮, 袁友仁, 等. 粗粒料单向压缩湿化变形试验研究[J]. 水利水运工程学报, 2009(3): 99–102. doi: 10.3969/j.issn.1009-640X.2009.03.016 ZHU Wen-jun, ZHANG Zong-liang, YUAN You-ren, et al. Study on wetting deformation behavior of coarse-grained materials under axial compression condition[J]. Hydro-Science and Engineering, 2009(3): 99–102. (in Chinese) doi: 10.3969/j.issn.1009-640X.2009.03.016
[3] MOLINA S L, BRADFIELD L, FITYUS S G, et al. Design of a 720 mm square direct shear box and investigation of the impact of boundary conditions on large-scale measured strength[J]. Geotechnical Testing Journal, 2020, 43(6): 20190344. doi: 10.1520/GTJ20190344
[4] 土工试验方法标准: GB/T 50123—2019[S]. 2019. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
[5] 孙国亮. 堆石料风化过程中的抗剪强度和变形特性研究[D]. 北京: 清华大学, 2009. SUN Guo-liang. Studies on Shear Strength and Deformation Characteristics of Rockfill During Weathering[D]. Beijing: Tsinghua University, 2009. (in Chinese)
[6] 曹光栩. 山区机场高填方工后沉降变形研究[D]. 北京: 清华大学, 2012. CAO Guang-xu. Study on Post-Construction Settlement of High Fill Foundation in Mountainous Airport[D]. Beijing: Tsinghua University, 2012. (in Chinese)
[7] 石修松, 左永振, 张婷, 等. 堆石体K0状态单向压缩流变实验研究[J]. 煤炭学报, 2010, 35(9): 1451–1455. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201009012.htm SHI Xiu-song, ZUO Yong-zhen, ZHANG Ting, et al. Experimental study of unidirectional compression creep in K0 state for rockfill material[J]. Journal of China Coal Society, 2010, 35(9): 1451–1455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201009012.htm
[8] 汪小刚. 高土石坝几个问题探讨[J]. 岩土工程学报, 2018, 40(2): 203–222. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802002.htm WANG Xiao-gang. Discussion on some problems observed in high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 203–222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802002.htm
[9] MARSAL R J. Mechanical Properties of Rockfill[M]// Embankment Dam Engineering, New York: John Wiley & Sons, 1973.
[10] OLDECOP L A, ALONSO E E. Measurement of lateral stress and friction in rockfill oedometer tests enabling the analysis of the experimental results in the p'-q space[J]. Geotechnical Testing Journal, 2017, 40(5): 822–832.
[11] 刘君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. 岩土力学, 2008, 29(增刊1): 107–112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1019.htm LIU Jun, LIU Fu-hai, KONG Xian-jing. Particle flow code numerical simulation of particle breakage of rockfill[J]. Rock and Soil Mechanics, 2008, 29(S1): 107–112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1019.htm
[12] 王海俊, 殷宗泽. 堆石料长期变形的室内试验研究[J]. 水利学报, 2007, 38(8): 914–919. doi: 10.3321/j.issn:0559-9350.2007.08.004 WANG Hai-jun, YIN Zong-ze. Experimental study on deformation of rockfill material due to long term cyclic wetting-drying[J]. Journal of Hydraulic Engineering, 2007, 38(8): 914–919. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.08.004
[13] 张丙印, 孙国亮, 张宗亮. 堆石料的劣化变形和本构模型[J]. 岩土工程学报, 2010, 32(1): 98–103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001018.htm ZHANG Bing-yin, SUN Guo-liang, ZHANG Zong-liang. Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 98–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001018.htm
-
期刊类型引用(1)
1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
其他类型引用(9)