One-dimensional consolidation analysis of saturated lumpy composite backfill foundation
-
摘要: 用块状渣土置换软弱地基和回填低洼谷地等是处置工程渣土的有效途径。为了分析饱和块状混合回填土地基的固结性状,运用混合物理论建立了其一维固结模型。首先,假定块状土固相和充填土固相之间满足等应变条件,获得了饱和块状混合回填土中各相应变与块状土孔隙变形和充填土孔隙变形的关系式。其次,在小应变条件下,根据自由能势函数方程建立了饱和块状混合回填土的一维线弹性本构方程,再结合达西定律和应力平衡方程获得了一维固结控制方程。再次,利用分离变量法得到一维固结解析解,通过退化本文模型与已有模型进行对比,验证了本文模型的正确性。最后,基于所得解析解,分析了充填土孔隙渗透系数、块状土孔隙渗透系数以及流体交换参数等因素对饱和块状混合回填土地基固结性状的影响。分析结果表明:充填土孔隙渗透系数对饱和块状混合回填土地基整体固结性状起主导作用;在固结初期,块状土超孔压会有一定程度的上升,且3个参数具有相似的作用机理。Abstract: It is an effective way to replace the soft foundation waste and backfill the low-lying valley with the lumpy waste. In order to explore the consolidation behaviors of saturated lumpy composite backfill foundation, one-dimensional (1-D) consolidation model is established by using the mixture theory. Firstly, based on the assumption of the equal solid strain condition between lumpy soil and filling soil, the formulations are obtained between each constituent strain and pore deformations in lumpy soil and filling soil. Then, under small strain, the 1-D linear elastic constitutive equations for the saturated lumpy composite backfill soil are derived by applying the free energy potential constitutive equations, and the governing equation for 1-D consolidation is provided based on the Darcy's law and the stress equilibrium equation. Meanwhile, its analytical solution is gained by using the separation variable method, and the contrast between the degenerating model and other existing ones shows the validity of the proposed model. Finally, the influences of two pore permeability coefficients and fluid exchange parameter on the characteristics of 1-D consolidation for the saturated lumpy composite backfill foundation are studied by adopting the analytical solution. The analysis results indicate that the permeability coefficient in filling soil plays a leading role in the consolidation behaviors, and the pore pressure in the lumpy soil increases to a certain extent at the initial stage of consolidation and three parameters have the similar mechanism.
-
-
表 1 Khalili等的模型参数Fig 1 Model parameters of Khalili et al
h/m σ0/kPa ES/kPa ED/kPa φFP0 10 100 1.0×104 1.111×104 0.06 kLP/(m·s-1) kFP//(m·s-1) χ/(kPa−1⋅s−1) φLP0 1.0×10−4 1.0×10−1 1.001×10−4 0.54 φFS0EFS/kPa EC/kPa 100 1.0×10−8 表 2 饱和块状混合回填土地基模型的模型参数
Table 2 Model parameters of samples of saturated lumpy composite backfill foundation
σ0/kPa ES/kPa EH/kPa ED /kPa 100 1577.2 1627 1607.6 EC/kPa φLS0 φFS0 kLP/(m·s-1) 1141.8 0.226 0.154 5.03×10−11 kFP/(m·s-1) φLP0 φFP0 χ/(kPa−1⋅s−1) 1.22×10−9 0.271 0.349 1.0×10−9 -
[1] 詹良通, 江文豪, 王顺玉, 等. 工程泥浆自重固结及低位真空加载过程的大型模型试验研究[J]. 岩土工程学报, 2020, 42(S1): 32–37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1007.htm ZHAN Liang-tong, JIANG Wen-hao, WANG Shun-yu, et al. Large-scale model test investigation on self-weight consolidation and low vacuum loading process of construction waste slurry[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 32–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1007.htm
[2] 艾啸韬, 王光进, 张超, 等. 宽级配废石的高排土场稳定性研究[J]. 岩土力学, 2020, 41(11): 3777–3788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011030.htm AI Xiao-tao, WANG Guang-jin, ZHANG Chao, et al. Stability analysis of high dump with wide graded waste rock[J]. Rock and Soil Mechanics, 2020, 41(11): 3777–3788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011030.htm
[3] 苏夏征, 程峰, 谢廷勇. 工程渣土场回填土的力学性能及扩容分析[J]. 工程地质学报, 2020, 4(45): 1–11. SU Xia-zheng, CHENG Feng, XIE Ting-yong. Mechanical properties and capacity expansion analysis of backfill soil in engineering muck field[J]. Journal of Engineering Geology, 2020, 4(45): 1–11. (in Chinese)
[4] 黄刚海. 强降雨入渗下复杂地形排土场稳定性分析[J]. 岩土工程学报, 2013, 35(增刊2): 292–295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2050.htm HUANG Gang-hai. Stability analysis of waste dump with complex terrain under heavy rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 292–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2050.htm
[5] 张先伟, 杨爱武, 孔令伟, 等. 天津滨海吹填泥浆的自重沉降固结特性研究[J]. 岩土工程学报, 2016, 38(5): 769–776. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605001.htm ZHANG Xian-wei, YANG Ai-wu, KONG Ling-wei, et al. Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai District[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 769–776. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605001.htm
[6] 张楠, 朱伟, 王亮, 等. 吹填泥浆中土颗粒沉降-固结规律研究[J]. 岩土力学, 2013, 34(6): 1681–1686. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306025.htm ZHANG Nan, ZHU Wei, WANG Liang, et al. Study of sedimentation and consolidation of soil particles in dredged slurry[J]. Rock and Soil Mechanics, 2013, 34(6): 1681–1686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306025.htm
[7] 蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201–225. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102002.htm CAI Yuan-qiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201–225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102002.htm
[8] SHI X S, HERLE I, YIN J H. Laboratory study of the shear strength and state boundary surface of a natural lumpy soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018093. doi: 10.1061/(ASCE)GT.1943-5606.0001987
[9] HERBSTOVÁ V, HERLE I. Structure transitions of clay fills in North-Western Bohemia[J]. Engineering Geology, 2009, 104(3/4): 157–166.
[10] SHI X S, HERLE I. Laboratory investigation of artificial lumpy materials[J]. Engineering Geology, 2014, 183: 303–314. doi: 10.1016/j.enggeo.2014.10.020
[11] KOSTKANOVÁ V, HERLE I, BOHÁC J. Transitions in structure of clay fills due to suction oscillations[J]. Procedia Earth and Planetary Science, 2014, 9: 153–162. doi: 10.1016/j.proeps.2014.06.011
[12] BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[strata[J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286–1303. doi: 10.1016/0021-8928(60)90107-6
[13] AIFANTIS E C. Introducing a multi-porous medium[J]. Developments in Mechanics, 1977, 8: 209–211.
[14] LI J, YIN Z Y, CUI Y J, et al. Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54(2): 173–187. doi: 10.1139/cgj-2015-0574
[15] SÁNCHEZ M, GENS A, VILLAR M V, et al. Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils[J]. International Journal of Geomechanics, 2016, 16(6): D4016015. doi: 10.1061/(ASCE)GM.1943-5622.0000728
[16] KHALILI N, VALLIAPPAN S, WAN C F. Consolidation of fissured clays[J]. Géotechnique, 1999, 49(1): 75–89. doi: 10.1680/geot.1999.49.1.75
[17] YANG L A, TAN T S, TAN S A, et al. One-dimensional self-weight consolidation of a lumpy clay fill[J]. Géotechnique, 2002, 52(10): 713–725. doi: 10.1680/geot.2002.52.10.713
[18] NOGAMI T, WANG W D, LI M X. Consolidation of lumpy clay fills[C]// 1st Asian-Pacific Congress on Computational Mechanics, 2001, Hong Kong.
[19] SHI X S, HERLE I, MUIR WOOD D. A consolidation model for lumpy composite soils in open-pit mining[J]. Géotechnique, 2018, 68(3): 189–204. doi: 10.1680/jgeot.16.P.054
[20] 胡亚元. 基于混合物理论的饱和岩石弹塑性模型[J]. 岩土工程学报, 2020, 42(12): 2161–2169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012002.htm HU Ya-yuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161–2169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012002.htm
[21] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201–272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201–272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm
[22] 刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京: 科学出版社, 2016: 73–84. LIU Yan, ZHAO Cheng-gang, CAI Guo-qing. Rational Soil Mechanics and Thermodynamics[M]. Beijing: Science Press, 2016: 73–84. (in Chinese)
[23] COLEMAN B D, NOLL W. The thermodynamics of elastic materials with heat conduction and viscosity[J]. Archive for Rational Mechanics and Analysis, 1963, 13(1): 167–178. doi: 10.1007/BF01262690
[24] ZHANG Q, CHOO J, BORJA R I. On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 570–592. doi: 10.1016/j.cma.2019.04.037
[25] ZENG L L, HONG Z S, CAI Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1/2): 86–93.
[26] ROBINSON R G, TAN T S, DASARI G R, et al. Experimental study of the behavior of a lumpy fill of soft clay[J]. International Journal of Geomechanics, 2005, 5(2): 125–137. doi: 10.1061/(ASCE)1532-3641(2005)5:2(125)
[27] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
-
期刊类型引用(1)
1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 . 百度学术
其他类型引用(0)