Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact
-
摘要: 为探索动态扰动后西部矿区软岩夹层的能量耗散规律和破坏模式,利用分离式霍普金森压杆装置对弱胶结红砂岩进行动态冲击破坏试验,分析该类红砂岩在受到不同加载速率、不同次数扰动冲击以及是否扰动的条件下,试样在相同加载速率破坏性冲击过程中的能量耗散与分形特征。试验结果表明:在不同速率扰动冲击作用下,随着扰动冲击次数的增加反射能递增而透射能和耗散能呈减小趋势,其中较高速率扰动冲击下试样的反射能高于低速率扰动冲击,耗散能则相反,且低速率扰动冲击下试样的耗散能、能量耗散率和能量耗散密度高于较高速率扰动冲击,表明低速率扰动冲击下试样的能量利用率更高;在破坏性冲击试验中,随着扰动冲击次数的增加,低速率扰动后试样的破碎程度相较于未扰动与高速率扰动更为严重,对应分形维数Db低速率扰动 > 未扰动 > 高速率扰动,表明分形维数与扰动冲击次数呈正相关,与扰动冲击速率呈负相关;在相同扰动冲击次数下,低速率扰动试样的Db所对应累积耗散能和耗散能密度高于较高速率扰动试样,而对应的累积反射能则相反。Abstract: To explore the energy dissipation law and failure mode of soft rock interlayer in western mining areas of China after dynamic disturbance, the dynamic impact failure tests on weakly cemented red sandstone are carried out by using the separated Hopkinson compression bar device. Under the impact of this red sandstone under different loading rates, different times of disturbance and whether there is the disturbance or not, the energy dissipation and fractal characteristics of the samples during the same loading rate impact failure are analyzed. The experimental results show that under different disturbance impact rates, with the increase of disturbance impact times, the reflection energy increases, while the transmission energy and dissipation energy decrease. The reflection energy of the samples under the impact of high-speed disturbance is higher than that of the low-speed disturbance impact, while the dissipative energy is the opposite. Moreover, the dissipative energy of the samples under the impact of low-speed rate disturbance is opposite. The energy dissipation rate and energy dissipation density are higher than those of the high-speed disturbance impact, which indicates that the energy utilization rate of the samples is higher under the impact of low-speed disturbance. In the impact failure tests, with the increase of the number of disturbance impact, the fragmentation degree of the sample after the low-speed rate disturbance is more serious than that of the undisturbed and high-speed rate disturbance. The low-speed rate disturbance of fractal dimension Db > undisturbed > high-speed rate disturbance shows that the fractal dimension is positively correlated with the number of disturbance shocks. The results show that the impact rate is negatively correlated with the disturbance. Under the same number of disturbance impact, the cumulative dissipation energy and energy density of Db of the low-speed rate-disturbed samples are higher than those of the high-speed disturbed samples, while the cumulative reflection energy is opposite.
-
Keywords:
- weakly cemented sandstone /
- disturbance impact /
- SHPB /
- energy dissipation /
- fractal dimension
-
-
表 1 红砂岩基本物理力学参数
Table 1 Basic physical and mechanical parameters of red sandstone
密度/(g·cm-3) 纵波波速/(m·s-1) 单轴抗压强度/MPa 弹性模量/GPa 孔隙度/% 1.874 1897 13.78 1.22 22.8 表 2 扰动作用下红砂岩冲击破碎块度的筛分结果
Table 2 Screening results of impact fragmentation of red sandstone under disturbing action
试件编号 筛分直径/mm 总质量/g Db 0.080 0.160 0.315 0.630 1.250 2.500 5.000 10.000 15.000 30.000 A1-Z 2.18 3.56 1.52 1.20 0.80 3.44 6.48 2.53 35.82 39.18 96.71 2.365 A3-Z 2.78 4.41 1.33 1.20 0.72 2.65 7.46 3.33 33.96 37.35 95.19 2.403 A5-Z 5.49 10.54 3.23 3.35 2.00 6.95 13.39 13.18 9.37 34.07 101.57 2.592 C1-Z 7.84 5.34 1.38 1.35 0.70 3.35 13.89 24.45 36.46 0.00 94.76 2.586 C3-Z 8.68 12.39 3.50 3.43 2.15 6.68 12.68 15.64 30.57 0.00 95.72 2.644 C5-Z 9.40 17.37 4.56 3.35 1.80 7.91 15.73 16.52 16.6 0.00 93.24 2.673 DZ 3.66 10.41 2.95 2.28 1.19 4.11 4.87 8.50 34.84 23.01 95.82 2.537 注:试件编号说明,A和C分别表示较高速率扰动组和低速率扰动组,编号1,3,5表示需要进行扰动的次数,-Z表示每组所有扰动次数完成后的破坏性冲击试验,DZ表示对照组。 -
[1] FAN L F, REN F, MA G W. Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 433–438. doi: 10.1007/s00603-011-0197-7
[2] LI X B, WENG L. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72. doi: 10.1016/j.tust.2016.01.028
[3] WENG L, HUANG L Q, TAHERI A, et al. Rockburst characteristics and numerical simulation based on a strain energy density index: a case study of a roadway in Linglong gold mine, China[J]. Tunnelling and Underground Space Technology, 2017, 69: 223–232. doi: 10.1016/j.tust.2017.05.011
[4] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996. XIE He-ping. Fractal—Introduction to Rock Mechanics[M]. Beijing: Science Press, 1996. (in Chinese)
[5] WENG L, WU Z J, LIU Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
[6] WANG L, QIN Y, JIA H B, et al. Study on mechanical properties and energy dissipation of frozen sandstone under shock loading[J]. Shock and Vibration, 2020(4): 8893128.
[7] 赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm ZHAO Zhong-hu, XIE He-ping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm
[8] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报, 2011, 36(12): 2007– 2011. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm LI Li-yun, XU Zhi-qiang, XIE He-ping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm
[9] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001 XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.001
[10] LUNDBERG B, OKROUHLIK M. Efficiency of a percussive rock drilling process with consideration of wave energy radiation into the rock[J]. International Journal of Impact Engineering, 2006, 32(10): 1573–1583. doi: 10.1016/j.ijimpeng.2005.02.001
[11] HONG L, ZHOU Z L, YIN T B, et al. Energy consumption in rock fragmentation at intermediate strain rate[J]. Journal of Central South University of Technology, 2009, 16(4): 677–682. doi: 10.1007/s11771-009-0112-5
[12] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. doi: 10.3321/j.issn:1000-6915.2008.07.011 LI Xi-bing, ZHOU Zi-long, YE Zhou-yuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.011
[13] FENG J J, WANG E Y, SHEN R X, et al. Investigation on energy dissipation and its mechanism of coal under dynamic loads[J]. Geomechanics and Engineering, 2016, 11(5): 657–670. doi: 10.12989/gae.2016.11.5.657
[14] MILLON O, RUIZ-RIPOLL M L, HOERTH T. Analysis of the behavior of sedimentary rocks under impact loading[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4257–4272. doi: 10.1007/s00603-016-1010-4
[15] GONG F Q, YE H, LUO Y. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body[J]. Shock and Vibration, 2018(6): 1–9.
[16] 张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J]. 采矿与安全工程学报, 2016, 33(2): 375–380. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm ZHANG Wen-qing, SHI Bi-ming, MU Chao-min. Experimental research on failure and energy dissipation law of coal under impact load[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375–380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm
[17] 王利, 高谦. 基于损伤能量耗散的岩体块度分布预测[J]. 岩石力学与工程学报, 2007, 26(6): 1202–1211. doi: 10.3321/j.issn:1000-6915.2007.06.015 WANG Li, GAO Qian. Fragmentation distribution prediction of rock based on damage energy dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1202–1211. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.06.015
[18] 李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2231–2241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm LI Cheng-jie, XU Ying, ZHANG Yu-ting, et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231–2241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm
[19] 李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981–988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm LI Cheng-jie, XU Ying, YE Zhou-yuan. Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 981–988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm
[20] 戴兵, 罗鑫尧, 单启伟, 等. 循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J]. 中国安全科学学报, 2020, 30(7): 69–77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm DAI Bing, LUO Xin-yao, SHAN Qi-wei, et al. Analysis on damage characteristics and energy dissipation of rock with a single hole under cyclic impact loads[J]. China Safety Science Journal, 2020, 30(7): 69–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm
[21] 邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215–2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm DENG Shu-xin, WANG Ming-yang, LI Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215–2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm
[22] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729–1740. doi: 10.3321/j.issn:1000-6915.2008.09.001 XIE He-ping, JU Yang, LI Li-yun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729–1740. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.001
[23] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565–3570. doi: 10.3321/j.issn:1000-6915.2004.21.001 XIE He-ping, PENG Rui-dong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565–3570. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.001
[24] 马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学, 2018, 39(11): 3921–3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm MA Qin-yong, GAO Chang-hui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads[J]. Rock and Soil Mechanics, 2018, 39(11): 3921–3928, 3968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm
[25] 金解放, 吴越, 张睿, 等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击, 2020, 40(10): 42–55. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm JIN Jie-fang, WU Yue, ZHANG Rui, et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion and Shock Waves, 2020, 40(10): 42–55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm
[26] 平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401–407. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm PING Qi, MA Qin-yong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401–407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm
-
期刊类型引用(8)
1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 . 百度学术
2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 . 百度学术
3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 . 百度学术
4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 . 百度学术
5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 . 百度学术
6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 . 百度学术
7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 . 百度学术
8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 . 百度学术
其他类型引用(8)