• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于状态空间法的阶梯型变截面水平受荷桩分析方法

张晓笛, 王金昌, 杨仲轩, 龚晓南, 徐荣桥

张晓笛, 王金昌, 杨仲轩, 龚晓南, 徐荣桥. 基于状态空间法的阶梯型变截面水平受荷桩分析方法[J]. 岩土工程学报, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
引用本文: 张晓笛, 王金昌, 杨仲轩, 龚晓南, 徐荣桥. 基于状态空间法的阶梯型变截面水平受荷桩分析方法[J]. 岩土工程学报, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
Citation: ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384

基于状态空间法的阶梯型变截面水平受荷桩分析方法  English Version

基金项目: 

浙江省“尖兵”“领雁”研发攻关计划项目 2022C03180

浙江省交通运输厅项目 ZJXL-JTT-202201A,202303

国家自然科学基金项目 52078457

浙江大学浙江交工协同创新联合研究中心研发项目 2021001

详细信息
    作者简介:

    张晓笛(1997—),女,硕士研究生,主要从事土与结构相互作用的研究。E-mail:zxd6814@zju.edu.cn

    通讯作者:

    王金昌, E-mail: wjc501@zju.edu.cn

  • 中图分类号: TU473

Analytical solutions for laterally loaded step-tapered piles by state space method

  • 摘要: 为研究阶梯型变截面桩的水平承载特性,基于Timoshenko梁理论,建立了综合考虑桩基尺寸效应、剪切变形和桩基材料非线性效应的四弹簧模型及其状态方程,获得了非线性桩土相互作用下任意长细比的桩截面内力与变形解析解。通过与已有文献中现场试验结果对比分析,验证该方法的适用性和有效性,并讨论了变径位置、桩径比和弹性模量比对桩基受荷特性的影响。研究结果表明:①桩基水平承载力对三者的敏感性为:桩径比 > 变径位置 > 弹性模量比;②综合考虑桩承载能力和经济性,建议变径位置、桩径比和弹性模量比取0.6。
    Abstract: To analyze the response of laterally loaded step-tapered piles, a four-spring model is proposed based on the Timoshenko beam theory considering the effects of pile diameter, shear deformation and nonlinear pile material behavior. The analytical solutions for the internal forces and deformations with arbitrary slenderness ratio can be derived by the state space method considering the nonlinear pile–soil interaction. The solutions are validated through the available field test results in the literatures. Furthermore, the influences of pile parameters, such as the variation position of the diameter, diameter ratio and Young's modulus ratio, on the pile loading responses are proposed. The results show that: (1) The sensitivity of these parameters follows the descending order: pile diameter ratio > variation position of pile diameter > Young's modulus ratio. (2) After trade-off between the pile lateral bearing capacity and the cost, it is suggested that the optimal variation position of the diameter, the pile diameter ratio and Young's modulus ratio should be set as 0.6.
  • 图  1   阶梯型变截面桩分析模型

    Figure  1.   Analytical model for step-tapered pile

    图  2   侧摩阻力分布示意图

    Figure  2.   Sketch of distribution of vertical shaft shear stress

    图  3   梁单元内力与变形示意图

    Figure  3.   Internal forces and deformations of a beam element

    图  4   桩身响应计算流程图

    Figure  4.   Flow chart for calculation of pile response

    图  5   本文方法与试验数据的对比

    Figure  5.   Comparison between proposed analytical method and field test data

    图  6   本文方法与试验的荷载-位移响应对比

    Figure  6.   Comparison of load-displacement responses between proposed analytical method and field test data

    图  7   桩截面弯矩-曲率关系

    Figure  7.   Relationship between moment and curvature of pile section

    图  8   本文方法与试验的荷载-位移响应对比

    Figure  8.   Comparison of load-displacement responses between proposed analytical method and field test data

    图  9   Ht=200 kN时不同变径位置下桩身受荷响应

    Figure  9.   Pile responses under different L1/L (Ht=200 kN)

    图  10   Ht=200 kN时不同桩径比下桩身受荷响应

    Figure  10.   Pile responses under different D2/D1 (Ht= 200 kN)

    图  11   Ht=200 kN时不同弹性模量比下桩身受荷响应

    Figure  11.   Pile responses under different E2/E1 (Ht= 200kN)

    图  12   L1/L, D2/D1E2/E1与∆Hu/Hu0的关系

    Figure  12.   Relationship among L1/L, D2/D1, E2/E1 and ∆Hu/Hu0

    表  1   桩顶与桩端的约束边界条件

    Table  1   Boundary conditions of pile head and end

    桩顶/端 约束形式 边界条件
    桩顶 自由 M1,0 = Mt, Q1,0 = Ht
    固支 ψ1,0 = 0, Q1,0 = Ht
    桩端 自由 Mn,1 = Mb, Qn,1 = Hb
    铰接 yn,1 = 0, Mn,1 = 0
    固支 ψn,1 = 0, yn,1 = 0
    下载: 导出CSV
  • [1]

    ISMAEL N F. Behavior of step tapered bored piles in sand under static lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 669-676. doi: 10.1061/(ASCE)GT.1943-5606.0000265

    [2] 常林越, 王金昌, 朱向荣, 等. 双层弹塑性地基水平受荷桩解析计算[J]. 岩土工程学报, 2011, 33(3): 433-440. http://www.cgejournal.com/cn/article/id/13959

    CHANG Linyue, WANG Jinchang, ZHU Xiangrong, et al. Analytical calculation of laterally loaded piles in double-layered elastoplastic soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 433-440. (in Chinese) http://www.cgejournal.com/cn/article/id/13959

    [3]

    ZHU M X, ZHANG Y B, GONG W M, et al. Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method[J]. International Journal of Geomechanics, 2017, 17(4): 4016104-4016122. doi: 10.1061/(ASCE)GM.1943-5622.0000800

    [4] 胡文韬, 刘豆, 耿大新, 等. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004014.htm

    HU Wentao, LIU Dou, GENG Daxin, et al. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 739-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004014.htm

    [5] 李丹, 简迪, 吴卓尔, 等. 三级阶梯型变截面嵌岩桩的承载特性研究[J]. 岩土力学, 2020(增刊2): 1-8.

    LI Dan, JIAN Di, WU Zhuoer, et al. Research on bearing characteristics of three-stage stepped rock-socketed piles[J]. Rock and Soil Mechanics, 2020(S2): 1-8. (in Chinese)

    [6]

    HAN J, FROST J D. Load-Deflection response of transversely isotropic piles under lateral loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(5): 509-529. doi: 10.1002/(SICI)1096-9853(20000425)24:5<509::AID-NAG79>3.0.CO;2-9

    [7] 竺明星, 龚维明, 卢红前, 等. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(增刊1): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1040.htm

    ZHU Mingxing, GONG Weiming, LU Hongqian, et al. Transfer matrix solutions for lateral behavior of pile foundation considering the skin and end resistance effect[J]. Engineering Mechanics, 2018, 35(S1): 230-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1040.htm

    [8] 竺明星, 戴国亮, 龚维明, 等. 水平荷载下桩身侧阻抗力矩的作用机制与计算模型研究[J]. 岩土力学, 2019, 40(7): 2593-2607, 2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907013.htm

    ZHU Mingxing, DAI Guoliang, GONG Weiming, et al. Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607, 2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907013.htm

    [9]

    BYRNE B W, HOULSBY G T, BURD H J, et al. PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till[J]. Géotechnique, 2020, 70(11): 1030-1047.

    [10]

    LIANG F Y, LI Y C, LI L, et al. Analytical solution for laterally loaded long piles based on fourier–laplace integral[J]. Applied Mathematical Modelling, 2014, 38(21/22): 5198-5216.

    [11]

    WANG J C, HUANG W M, XU R Q, et al. Analytical solution for segmental tunnel lining incorporating interaction between adjacent rings[J]. Journal of Engineering Mechanics, 2020, 146(7): 04020075-04020091.

    [12]

    ZHANG X D, WANG J C, CHEN Q J, et al. Analytical method for segmental tunnel linings reinforced by secondary lining considering interfacial slippage and detachment[J]. International Journal of Geomechanics, 2021, 21(6): 4021084.

    [13]

    REESE L, VAN I W, HOLTZ R. Single piles and pile groups under lateral loading[J]. Applied Mechanics Reviews, 2002, 55(1): B9-B10.

    [14]

    API (American Petroleum Institute). Recommended Practice Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design[S]. Washington D C: API Recommended Practice 2A-WSD, 2014.

    [15] 俞剑, 黄茂松, 李森, 等. 黏土中海上风电水平受荷大直径单桩设计方法的思考[J]. 海洋开发与管理, 2018, 35(增刊1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGL2018S1007.htm

    YU Jian, HUANG Maosong, LI Sen, et al. Thinking on design method of laterally loaded large diameter monopile for offshore wind turbines in clay[J]. Ocean Development and Management, 2018, 35(S1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGL2018S1007.htm

    [16]

    ZHANG Y H, ANDERSEN K H. Soil reaction curves for monopiles in clay[J]. Marine Structures, 2019, 65: 94-113.

    [17]

    MAHESHWARI B K, and WATANABE H. Nonlinear dynamic behavior of pile foundations: effects of separation at the soil-pile interface[J]. Soils and Foundations, 2006, 46(4): 437-448.

    [18]

    ASHOUR M, HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2): 289-302.

    [19]

    RONDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1978, 104(12): 1465-1488.

    [20]

    WANG L Z, LAI Y Q, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios[J]. Ocean Engineering, 2020, 212: 107492-107506.

    [21] 王伯惠, 上官兴. 中国钻孔灌注桩新发展[M]. 北京: 人民交通出版社, 1999: 89-90.

    WANG Bohui, SHANGGUAN Xing. New Development of Bored pile in China[M]. Beijing: China Communications Press, 1999: 89-90. (in Chinese)

    [22] 公路桥涵地基与基础设计规范: JTG 3363—2019[S]. 北京: 人民交通出版社, 2019.

    Specifications for Design of Foundation of Highway Bridges and Culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)

    [23]

    GEROLYMOS N, GAZETAS G. Static and dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(5): 377-394.

    [24]

    KO J, JEONG S. Plugging effect of open-ended piles in sandy soil[J]. Canadian Geotechnical Journal, 2015, 52(5): 535-547.

    [25]

    REESE L C, WANG S T. Analysis of piles under lateral loading with nonlinear flexural rigidity[C]// Proceedings of International Conference on Design and Construction of Deep Foundation, Orlando, 1994.

    [26]

    COWPER G R. The shear coefficient in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33(2): 335-340.

    [27]

    WANG L Z, HE B, HONG Y, et al. Field tests of the lateral monotonic and cyclic performance of jet grouting Reinforced cast-in-place piles[J]. Journal of Geotechnica and Geoenvironmental Engineering, 2015, 141(5): 06015001.

图(12)  /  表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  62
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  1952-04-01
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回