Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深部不同断面巷道分区破裂形态与围岩结构控制

许磊, 郭帅, DavideElmo, 刘洪林, 洪紫杰, 肖同强

许磊, 郭帅, DavideElmo, 刘洪林, 洪紫杰, 肖同强. 深部不同断面巷道分区破裂形态与围岩结构控制[J]. 岩土工程学报, 2023, 45(4): 720-729. DOI: 10.11779/CJGE20220375
引用本文: 许磊, 郭帅, DavideElmo, 刘洪林, 洪紫杰, 肖同强. 深部不同断面巷道分区破裂形态与围岩结构控制[J]. 岩土工程学报, 2023, 45(4): 720-729. DOI: 10.11779/CJGE20220375
XU Lei, GUO Shuai, Davide Elmo, LIU Honglin, HONG Zijie, XIAO Tongqiang. Patterns of zonal disintegration and structural control of surrounding rock of deep roadway with different sections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 720-729. DOI: 10.11779/CJGE20220375
Citation: XU Lei, GUO Shuai, Davide Elmo, LIU Honglin, HONG Zijie, XIAO Tongqiang. Patterns of zonal disintegration and structural control of surrounding rock of deep roadway with different sections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 720-729. DOI: 10.11779/CJGE20220375

深部不同断面巷道分区破裂形态与围岩结构控制  English Version

基金项目: 

国家自然科学基金项目 51964043

国家自然科学基金项目 52074101

河南省地下工程与灾变防控重点实验室(河南理工大学)自主课题 

河南省教育厅2023国际合作培育项目 

详细信息
    作者简介:

    许磊(1980—),男,河南焦作人,研究方向:巷道支护及绿色开采,任教于河南理工大学。E-mail: 32246714@qq.com

    通讯作者:

    Davide Elmo, E-mail: delmo@mining.ubc.ca

  • 中图分类号: TU433

Patterns of zonal disintegration and structural control of surrounding rock of deep roadway with different sections

  • 摘要: 采用理论分析、现场实测、模拟分析的方法,研究了各向等压条件下等效开挖矩形、直墙半圆拱和圆形断面分区破裂形态及围岩稳定结构。结论:3个断面分区破裂形态不同,矩形断面分区破裂呈“”状分布,直墙半圆拱断面分区破裂呈多层的“”状分布,圆形断面分区破裂呈“花瓣”状分布;三个断面位移特征相似,位移等值线浅部呈正立的“鸡蛋壳”形,深部呈“碗”形;支承压力在主破裂面处降低,在最外层主破裂面头部集中,在破裂面之间完整岩层处升高,呈分区集中,“波谷—波峰—波谷”震荡增高的特征向外传播;理想正方形破裂面弦长有an + 1=2ann=1,2,3,4)关系;浅部围岩分区破裂形成后,相当于深部围岩的伪开挖,3个断面均存在多层“”形围岩承载结构。巷道稳定原理就是促进多层承载结构相互依存,共同承载。具体措施:加密、加粗、加长锚杆(索)支护结构,建立浅部与深部多层承载结构相互联系,在浅部形成稳定锚固体促进深部围岩稳定,主破裂面精准注浆修复围岩破裂面和限制主破裂面滑移。
    Abstract: The patterns of zonal disintegration and stability structures of surrounding rock of the equivalent excavation rectangular, straight wall semi-circle arch and circular sections under isotropic isostatic conditions are studied through the theoretical analysis, field measurement and simulation analysis. The conclusions are drawn as follows: the patterns of zonal disintegration of three sections are different. The zonal disintegration of rectangular section exhibits ""distribution; and the straight wall semicircle arch and circular section show "" and "petal" shaped distributions. The displacement characteristics of three sections are similar; the shallow part of the displacement isoline has an upright "egg shell" shape and the deep part has a "bowl" shape. The abutment pressure decreases at the main fracture surface, concentrates at the head of the main fracture surface in the outermost layer, and increases at the complete rock layer between fracture surfaces, showing a zoning concentration. The abutment pressure propagates outward with the characteristics of "wave trough-wave crest-wave trough" that gradually increases. The chord length of an ideal square fracture surface has a relationship of an + 1=2an(n=1, 2, 3, 4). After the zonal disintegration of the shallow surrounding rock is formed, it is equivalent to the pseudo-excavation of deep surrounding rock. Three sections have the bearing structures of multi-layer "" shaped surrounding rock. The principle of roadway stability is to promote the interdependence and co-bearing of multi-layer bearing structures. The specific measures include encrypted, thickened, lengthened bolt (cable)supporting structures. The relationship between shallow and deep multi-layer bearing structures is established. The stable anchor solid is formed in the shallow part to promote the stability of the surrounding rock in the deep part. The precise grouting should be employed to repair the main fracture surface of the surrounding rock and to limit the slip of the main fracture surface.
  • 图  1   Taimyrskii矿山分区破裂

    Figure  1.   Zonal disintegration of Taimyrskii Mine

    图  2   特征线

    Figure  2.   Characteristic lines

    图  3   理想塑性流动理论的特征线

    Figure  3.   Characteristic lines of ideal plastic flow theory

    图  4   淮南矿区丁集煤矿巷道分区破裂

    Figure  4.   Zonal disintegration of roadway of Dingji Coal Mine in Huainan mining area

    图  5   唐口煤矿2307运输巷

    Figure  5.   Transportation roadway 2307 of Tangkou Coal Mine

    图  6   朱集西煤矿11502工作面运输巷

    Figure  6.   Transport roadway of 11502 working face of Zhuji West Mine

    图  7   口孜东煤矿-967 m西翼轨道大巷锚杆与围岩变形

    Figure  7.   Deformations of anchor and surrounding rock in 967 m west wing track of Kouzi East Mine

    图  8   围岩分区破裂钻孔窥视

    Figure  8.   Drilling peep of zonal disintegration in surrounding rock

    图  9   矩形、直墙半圆拱与等应力轴比圆

    Figure  9.   Rectangular, straight wall semi-circle arch and equivalent stress axial ratio circle

    图  10   试样单轴试验与单轴校核典型应力-应变曲线

    Figure  10.   Uniaxial tests and uniaxial check of typical stress-strain curves

    图  11   分区破裂基本形态及位移特征

    Figure  11.   Basic patterns and displacement characteristics of zonal disintegration in surrounding rock

    图  12   分区破裂围岩支承压力分布特征

    Figure  12.   Distribution characteristics of supporting pressure of surrounding rock during zonal disintegration

    图  13   矩形巷道分区破裂理想形态及围岩承载结构

    Figure  13.   Ideal patterns of zonal disintegration and supporting structures of surrounding rock of rectangular roadway

    图  14   直墙半圆拱巷道分区破裂理想形态及围岩承载结构

    Figure  14.   Ideal patterns of zonal disintegration and supporting structures of surrounding rock of straight wall semi-circle arch roadway

    图  15   圆形巷道分区破裂理想形态及围岩承载结构

    Figure  15.   Ideal patterns of zonal disintegration and supporting structures of surrounding rock of circular roadway

    图  16   西翼轨道大巷修复控制图

    Figure  16.   Repair and control plan of west wing track roadway

    图  17   西翼胶带运输大巷修复控制图

    Figure  17.   Repair and control plan of west wing belt roadway

    表  1   数值模型基本力学参数

    Table  1   Mechanical parameters of model

    密度/(kg·m-3) 弹性模量/GPa 泊松比ν 内摩擦角/(°) 内聚力/MPa 抗拉强度/MPa 剪胀角/(°)
    2650 8 0.25 35 3 2 2
    下载: 导出CSV

    表  2   数值模型开挖及支护参数

    Table  2   Parameters of excavation and supporting structures of numerical model

    矩形 直墙半圆拱 圆形(外接圆)
    宽5 m,高3.5 m 宽5 m,墙高2.3 m,拱半径2.5 m 半径:3.05 m
    锚杆:间排距:800 mm×800 mm,ϕ20 m×2100 m,加长锚固
    锚索:间排距:1600 mm×800 mm,ϕ17.8 m×7300 m,加长锚固
    下载: 导出CSV

    表  3   FLAC3D中锚杆(索)参数

    Table  3   Properties of supporting bolt(cable)in FLAC3D

    类型 密度/(kg·m-3) 弹性模量/GPa 抗拉强度/kN 黏结刚度/(N·m-2) 黏结强度/(N·m-1) 预应力/kN
    锚杆 7500 200 120 2×106 4×105 60
    锚索 7850 300 300 2×106 4×105 100
    下载: 导出CSV
  • [1] 黄炳香, 张农, 靖洪文, 等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报, 2020, 45(3): 911-926. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003006.htm

    HUANG Bingxiang, ZHANG Nong, JING Hongwen, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society, 2020, 45(3): 911-926. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003006.htm

    [2] 王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究[J]. 岩石力学与工程学报, 2018, 37(10): 2209-2218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810001.htm

    WANG Mingyang, CHEN Haoxiang, LI Jie, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in situ observations[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209-2218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810001.htm

    [3] 王猛, 牛誉贺, 于永江, 等. 主应力演化影响下的深部巷道围岩变形破坏特征试验研究[J]. 岩土工程学报, 2016, 38(2): 237-244. doi: 10.11779/CJGE201602006

    WANG Meng, NIU Yuhe, YU Yongjiang, et al. Experimental research on characteristics of deformation and failure of surrounding rock of roadway in deep mine under influence of principal stress evolution[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 237-244. (in Chinese) doi: 10.11779/CJGE201602006

    [4]

    ADAMS A J, JAGER G R. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1980, 80(6): 204-209.

    [5]

    SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workingsPart Ⅱ: rock fracture simulated in equivalent materials[J]. Soviet Mining, 1986, 22(4): 223-232. doi: 10.1007/BF02500845

    [6] 李世平. 权台矿3109综采区煤巷锚杆试验观测报告: 兼论煤巷锚杆特点与锚杆参数选择的新观点[J]. 中国矿业学院学报, 1979, 8(3): 22-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD197903001.htm

    LI Shiping. Observation of coal roadway roof bolt tests at 3109 mechanized section at Quantai Mine: characterstics of coal roadway roof bolts and new viewpoints on the choice of roof bolt parameters[J]. Journal of China University of Mining & Technology, 1979, 8(3): 22-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD197903001.htm

    [7] 贺永年. 软岩巷道围岩松动带及其状态分析[J]. 煤炭学报, 1991, 16(2): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199102009.htm

    HE Yongnian. Analysis of loose zone around the roadway in soft rock[J]. Journl of China Coal Society, 1991, 16(2): 63-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199102009.htm

    [8] 安瓦尔∙ 恰夫晒夫. 深部围岩的塑性变形及分区破裂化现象[Z]. 北京: 2008.

    DR Aleksandr. Plastic deformation and zonal disintegration of deep surrounding rock[Z]. Beijing: 2008. (in Chinese)

    [9] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8): 1545-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808005.htm

    LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808005.htm

    [10] 张强勇, 张绪涛, 向文, 等. 不同洞形与加载方式对深部岩体分区破裂影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1564-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308008.htm

    ZHANG Qiangyong, ZHANG Xutao, XIANG Wen, et al. Model test study of zonal disintegration in deep rock mass under different cavern shapes and loading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1564-1571. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308008.htm

    [11] 袁亮, 顾金才, 薛俊华, 等. 深部围岩分区破裂化模型试验研究[J]. 煤炭学报, 2014, 39(6): 987-993. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406001.htm

    YUAN Liang, GU Jincai, XUE Junhua, et al. Model test research on the zonal disintegration in deep rock[J]. Journal of China Coal Society, 2014, 39(6): 987-993. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406001.htm

    [12] 陈建功, 周陶陶, 张永兴. 深部洞室围岩分区破裂化的冲击破坏机制研究[J]. 岩土力学, 2011, 32(9): 2629-2634, 2644. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109013.htm

    CHEN Jiangong, ZHOU Taotao, ZHANG Yongxing. Shock failure mechanism of zonal disintegration within surrounding rock in deep chamber[J]. Rock and Soil Mechanics, 2011, 32(9): 2629-2634, 2644. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109013.htm

    [13] 唐春安, 张永彬. 岩体间隔破裂机制及演化规律初探[J]. 岩石力学与工程学报, 2008, 27(7): 1362-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200807010.htm

    TANG Chun'an, ZHANG Yongbin. Discussion on mechanism and evolution laws of fracture spacing in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1362-1369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200807010.htm

    [14] 高富强, 康红普, 林健. 深部巷道围岩分区破裂化数值模拟[J]. 煤炭学报, 2010, 35(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201001006.htm

    GAO Fuqiang, KANG Hongpu, LIN Jian. Numerical simulation of zonal distrigation of surrounding rock mass in deep mine roadways[J]. Journal of China Coal Society, 2010, 35(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201001006.htm

    [15] 宫凤强, 罗勇, 刘冬桥. 深部直墙拱形隧洞围岩板裂破坏的模拟试验研究[J]. 岩土工程学报, 2019, 41(6): 1091-1100. doi: 10.11779/CJGE201906013

    GONG Fengqiang, LUO Yong, LIU Dongqiao. Simulation tests on spalling failure in deep straight-wall-top-arch tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1091-1100. (in Chinese) doi: 10.11779/CJGE201906013

图(17)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回