• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑挡墙厚度基坑稳态渗流场的解析解

余俊, 李东凯, 胡钟伟, 郑靖凡

余俊, 李东凯, 胡钟伟, 郑靖凡. 考虑挡墙厚度基坑稳态渗流场的解析解[J]. 岩土工程学报, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
引用本文: 余俊, 李东凯, 胡钟伟, 郑靖凡. 考虑挡墙厚度基坑稳态渗流场的解析解[J]. 岩土工程学报, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
Citation: YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357

考虑挡墙厚度基坑稳态渗流场的解析解  English Version

基金项目: 

国家自然科学基金项目 52078496

详细信息
    作者简介:

    余俊(1978—),男,博士,副教授,主要从事隧道与地下工程方面的教学和研究工作。E-mail: yujun@csu.edu.cn

  • 中图分类号: TU463

Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall

  • 摘要: 对悬挂式考虑厚度挡墙支护下的各向同性土层中基坑的二维稳态渗流场进行了解析研究。根据对称性取基坑半截面,将周围土层划分为5个规则的区域,利用叠加法和分离变量法将5个区域内的水头分布表示为级数解的形式,结合区域间的连续条件得出基坑周围渗流场的显式解析解。将本文解析解得到的水头计算结果和挡墙上水压力计算结果与有限元软件进行对比,结果吻合较好,验证了本文解析解的正确性。将一维渗流、二维渗流中流网法以及不考虑挡墙厚度情况下和考虑挡墙厚度情况下本文解析解计算得到的挡墙上的水压力与有限元解进行对比分析,发现考虑挡墙厚度情况下本文解析解的计算结果最为精确,指出了其他几种解法的误差。最后对基坑渗流场影响因素进行了参数分析,基坑内侧宽度、不透水层顶面至挡墙底部距离、坑内水位、挡墙厚度等因素对基坑水头分布有较大影响,随着挡墙厚度增大,最大水力梯度降到挡墙底部,基坑外侧渗流场远场水头增大,挡墙底部水头明显减小。
    Abstract: The two-dimensional steady-state seepage field of a foundation pit in an isotropic soil layer supported by a suspended retaining wall considering thickness is analytically studied. The distribution of water head in the five regions is expressed in the form of a graded solution by using the superposition method and the method of separation of variables, and the explicit analytical solution of the seepage field around the pit is derived by combining the continuity conditions between the regions. Compared with the angle-preserving transform solution, this analytical solution can directly solve the values of water head at any point inside and outside the pit without generating singularities. The correctness of the analytical solution is verified by comparing with the calculated results of the water head obtained from the finite element software. The distribution of total water head obtained from the analytical solution of this paper is curved. The factors such as the inner width of the pit, the distance from the top of the impermeable layer to the bottom of the retaining wall, the water level in the pit and the thickness of the retaining wall have a great influence on the distribution of water head of the pit. As the thickness of the retaining wall increases, the water heads in the far field of the seepage field of the pit and the bottom of the retaining wall change more, and the maximum hydraulic gradient drops to the bottom of the retaining wall. Compared with the flow network methods in one-dimensional seepage and two-dimensional seepage and the proposed analytical solution without considering the thickness of the retaining wall, it is more accurate to calculate the water pressure in the design by using the analytical solution of two-dimensional seepage considering the thickness of the retaining wall.
  • 图  1   基坑二维渗流模型

    Figure  1.   Model for two-dimensional seepage around foundation pit

    图  2   本文解与有限元软件水头计算结果对比

    Figure  2.   Comparison between solution in this paper and calculated results of water head by finite element software

    图  3   不同计算方法下水压力计算结果比较

    Figure  3.   Comparison of calculation results of water pressure among different calculation methods

    图  4   c对基坑周围总水头分布的影响

    Figure  4.   Effects of c on distribution of total water head around foundation pit

    图  5   a对基坑周围总水头分布的影响

    Figure  5.   Effects of a on distribution of total water head around foundation pit

    图  6   h2对基坑周围总水头分布的影响

    Figure  6.   Effects of h2 on distribution of total water head around foundation pit

    图  7   d对基坑周围总水头分布的影响

    Figure  7.   Effects of d on distribution of total water head around foundation pit

    表  1   基坑渗流模型的工程参数

    Table  1   Parameters of seepage model for foundation pit (单位: m)

    b c h1 h2 a d
    23 7 15 9 6 2
    下载: 导出CSV

    表  2   基坑外侧挡墙上各点的水压力分布

    Table  2   Distribution of water pressure at each point on retaining wall outside foundation pit

    计算点号 深度zi /m 水压力/kPa
    一维渗流 本文解(考虑挡墙厚度) 有限元法(考虑挡墙厚度) 流网法 有限元法(不考虑挡墙厚度) 本文解(不考虑挡墙厚度)
    a 0 0 0 0 0 0 0
    b 5 49.00 40.49 39.76 36.00 37.71 38.45
    c 9 88.20 71.97 70.62 62.10 66.73 68.04
    d 12 117.60 94.23 92.54 78.50 86.76 88.46
    e 15 147.00 113.67 111.63 94.90 102.85 104.91
    f 17 166.60 121.41 118.16 101.30 105.85 107.12
    下载: 导出CSV

    表  3   基坑外侧挡墙上各点水压力不同计算方法误差对比

    Table  3   Comparison of errors among different methods for water pressure at each point on retaining wall outside foundation pit

    计算点号 深度zi /m 本文解(不考虑挡墙厚度)较有限元法(不考虑挡墙厚度)误差/% 流网法较有限元法(不考虑挡墙厚度)误差/% 一维渗流较本文解(不考虑挡墙厚度)误差/% 本文解(考虑挡墙厚度)较有限元法(考虑挡墙厚度)误差/% 本文解(不考虑挡墙厚度)较本文解(考虑挡墙厚度)误差/%
    a 0 0 0 0 0 0
    b 5 1.96 -4.53 27.44 1.84 -5.04
    c 9 1.96 -6.94 29.63 1.91 -5.46
    d 12 1.96 -9.52 32.94 1.83 -6.12
    e 15 2.00 -7.73 40.12 1.83 -7.71
    f 17 1.20 -4.30 55.53 2.75 -11.77
    下载: 导出CSV

    表  4   基坑内侧挡墙上各点的水压力分布

    Table  4   Distribution of water pressure at each point on retaining wall inside foundation pit

    计算点号 深度zi /m 水压力/kPa
    一维渗流 本文解(考虑挡墙厚度) 有限元法(考虑挡墙厚度) 流网法 有限元法(不考虑挡墙厚度) 本文解(不考虑挡墙厚度)
    d 0 0 0 0 0 0 0
    e 3 29.40 46.23 45.90 42.50 50.22 50.68
    f 5 49.00 82.34 83.90 75.13 95.36 94.13
    下载: 导出CSV

    表  5   基坑内侧挡墙上各点水压力不同计算方法误差对比

    Table  5   Comparison of errors among different calculation methods of water pressure at each point on retaining wall inside foundation pit

    计算点号 深度zi /m 本文解(不考虑挡墙厚度)较有限元法(不考虑挡墙厚度)误差/% 流网法较有限元法(不考虑挡墙厚度)误差/% 一维渗流较本文解(不考虑挡墙厚度)误差/% 本文解(考虑挡墙厚度)较有限元法(考虑挡墙厚度)误差/% 本文解(不考虑挡墙厚度)较本文解(考虑挡墙厚度)误差/%
    d 0 0 0 0 0 0
    e 3 0.92 -15.37 -41.99 0.72 9.63
    f 5 -1.29 -23.38 -47.94 -1.86 14.32
    下载: 导出CSV
  • [1] 李广信, 刘早云, 温庆博. 渗透对基坑水土压力的影响[J]. 水利学报, 2002, 33(5): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200205015.htm

    LI Guangxin, LIU Zaoyun, WEN Qingbo. Influence of seepage on water and earth pressure in foundation pit[J]. Journal of Hydraulic Engineering, 2002, 33(5): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200205015.htm

    [2] 李玉岐, 周健, 谢康和. 基坑开挖卸载诱发的渗流分析[J]. 岩土工程学报, 2006, 28(10): 1259-1262. doi: 10.3321/j.issn:1000-4548.2006.10.015

    LI Yuqi, ZHOU Jian, XIE Kanghe. Analysis of seepage induced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1259-1262. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.015

    [3] 裴桂红, 吴军, 刘建军, 等. 深基坑开挖过程中渗流-应力耦合数值模拟[J]. 岩石力学与工程学报, 2004, 23(增刊2): 4975-4978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S2055.htm

    PEI Guihong, WU Jun, LIU Jianjun, et al. Numerical modeling of seepage-stress coupling of deep foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S2): 4975-4978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S2055.htm

    [4] 李瑛, 陈东, 刘兴旺, 等. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103025.htm

    LI Ying, CHEN Dong, LIU Xingwang, et al. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain[J]. Rock and Soil Mechanics, 2021, 42(3): 826-832, 862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103025.htm

    [5] 姜忻良, 宗金辉. 基坑开挖工程中渗流场的三维有限元分析[J]. 岩土工程学报, 2006, 28(5): 564-568. doi: 10.3321/j.issn:1000-4548.2006.05.004

    JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.004

    [6] 马昌慧, 毛云, 黄魏, 等. 帷幕在降水条件下对基坑周边渗流及变形影响的研究[J]. 岩土工程学报, 2014, 36(增刊2): 294-298. doi: 10.11779/CJGE2014S2052

    MA Changhui, MAO Yun, HUANG Wei, et al. Effects of dewatering methods on seepage and deformation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 294-298. (in Chinese) doi: 10.11779/CJGE2014S2052

    [7]

    JIE Y X, JIE G Z, MAO Z Y, et al. Seepage analysis based on boundary-fitted coordinate transformation method[J]. Computers and Geotechnics, 2004, 31(4): 279-283. doi: 10.1016/j.compgeo.2004.01.010

    [8]

    GRIFFITHS D V. Seepage beneath unsymmetric cofferdams[J]. Géotechnique, 1994, 44(2): 297-305. doi: 10.1680/geot.1994.44.2.297

    [9]

    LI Y Q, YING H W, XIE K H. On the dissipation of negative excess porewater pressure induced by excavation in soft soil[J]. Journal of Zhejiang University (Science A), 2005, 6(3): 188-193.

    [10]

    BERESLAVSKII E N. The flow of ground waters around a Zhukovskii sheet pile[J]. Journal of Applied Mathematics and Mechanics, 2011, 75(2): 210-217. doi: 10.1016/j.jappmathmech.2011.05.010

    [11]

    HARR M E. Groundwater and seepage[M]. New York: McGraw-Hill, 1962.

    [12]

    XIE K H, WANG Y L, WANG K, et al. Application of Hankel transforms to boundary value problems of water flow due to a circular source[J]. Applied Mathematics and Computation, 2010, 216(5): 1469-1477.

    [13]

    FOX E N, MCNAMEE J. XXV. The two-dimensional potential problem of seepage into a cofferdam[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1948, 39(290): 165-203.

    [14] 于佳卉. 悬挂式止水帷幕基坑降水承压含水层稳定流渗流场解析解[D]. 天津: 天津大学, 2018.

    YU Jiahui. Analytical Solution of Steady Seepage into Partially Penetrating Cutoff Wall during Excavation Dewatering[D]. Tianjin: Tianjin University, 2018. (in Chinese)

    [15] 黄大中, 谢康和, 应宏伟. 渗透各向异性土层中基坑二维稳定渗流半解析解[J]. 浙江大学学报(工学版), 2014, 48(10): 1802-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410013.htm

    HUANG Dazhong, XIE Kanghe, YING Hongwei. Semi-analytical solution for two-dimensional steady seepage around foundation pit in soil layer with anisotropic permeability[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(10): 1802-1808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410013.htm

    [16] 应宏伟, 聂文峰, 黄大中. 地下水位波动引起重力式挡墙基坑周围地基土孔压变化及对挡墙稳定性的影响[J]. 岩石力学与工程学报, 2014, 33(11): 2370-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411021.htm

    YING Hongwei, NIE Wenfeng, HUANG Dazhong. Influences of groundwater level fluctuation on the stability of gravity retaining wall of pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2370-2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411021.htm

    [17] 丁君. 工程电磁场与电磁波[M]. 北京: 高等教育出版社, 2005.

    DING Jun. Engineering Electromagnetic Field and Electromagnetic Wave[M]. Beijing: Higher Education Press, 2005. (in Chinese)

    [18] 王钊, 邹维列, 李广信. 挡土结构上的土压力和水压力[J]. 岩土力学, 2003, 24(2): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200302001.htm

    WANG Zhao, ZOU Weilie, LI Guangxin. Earth pressure and water pressure on retaining structure[J]. Rock and Soil Mechanics, 2003, 24(2): 146-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200302001.htm

图(7)  /  表(5)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回