• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粗糙岩石单裂隙非达西流动的试验和数值模拟研究

朱寅斌, 李长冬, 周佳庆, 项林语, 余海兵, 陈文强

朱寅斌, 李长冬, 周佳庆, 项林语, 余海兵, 陈文强. 粗糙岩石单裂隙非达西流动的试验和数值模拟研究[J]. 岩土工程学报, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307
引用本文: 朱寅斌, 李长冬, 周佳庆, 项林语, 余海兵, 陈文强. 粗糙岩石单裂隙非达西流动的试验和数值模拟研究[J]. 岩土工程学报, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307
ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307
Citation: ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307

粗糙岩石单裂隙非达西流动的试验和数值模拟研究  English Version

基金项目: 

国家自然科学基金项目 42090054

国家自然科学基金项目 41922055

国家自然科学基金项目 51909247

湖北省重点研发计划项目 2020BCB079

详细信息
    作者简介:

    朱寅斌(1997—),男,博士研究生,主要从事岩体裂隙渗流方面的研究。E-mail: zhuyinbin2022@163.com

    通讯作者:

    李长冬, E-mail: lichangdong@cug.edu.cn

  • 中图分类号: TU43

Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture

  • 摘要: 采用3D雕刻方式制作了一批具有特定粗糙度的砂岩裂隙样品,结合自行设计的可定量调整粗糙岩石单裂隙开度的装置,实现了在试验中对岩石单裂隙试样开度和表面粗糙度的定量化控制。开展一系列不同流量下的渗流试验,研究了平均开度和表面粗糙度对粗糙岩石单裂隙非达西流动的影响。结果表明Forchheimer方程可以准确的描述裂隙中流体流量与压力梯度间的非线性关系。分形维数是表征岩石裂隙表面粗糙度的有效参数,其增大主要导致裂隙的曲折程度增大而使流动路径变得更复杂,从而促进非达西流动的发生。建立了惯性渗透率与平均开度和分形维数之间的经验定量化模型,通过直接求解Navier-Stokes方程来开展三维粗糙单裂隙渗流模拟,验证了所建立模型的准确性和所开展渗流试验的可靠性。粗糙岩石单裂隙的平均开度越小、表面粗糙度越大则所建立的经验定量化模型预测的结果就越精确。
    Abstract: A series of rough-walled rock fracture specimens with specific surface roughnesses are made by using the three- dimensional carving. After that, the self-designed apparatus which can quantitatively change the aperture of single rock fracture is adopted to realize the purpose of aperture and surface roughness to be quantitatively controlled in the experiment. The seepage experiments on all rock fracture replicas at different flow rates are carried out to study the influences of the mean aperture and surface roughness on the non-Darcian flow in a single rough-walled rock fracture. The results show that the Forchheimer equation is suitable for characterizing the non-Darcian flow in rough-walled fractures. The fractal dimension is an effective parameter to reflect the surface roughness of rock fracture, and the increase of fractal dimension mainly leads to an enlargement in degree of tortuousness and results in the increased complexity of flow paths. An empirical quantification model is established to relate the inertial permeability to the mean aperture and fractal dimension. The numerical simulations by directly solving the Navier-Stokes equation are performed to investigate the non-Darcian flow in three-dimensional rough-walled fractures with different apertures and roughnesses. The inertial permeabilities of the simulated results agree well with those of the empirical quantification model and experiments, indicating that both the model and the experiments are reliable. The prediction accuracy of the empirical model increases with the decrease of the mean aperture and increase of surface roughness.
  • 图  1   试验装置示意图

    Figure  1.   Illustration of hydraulic test apparatus

    图  2   一阶导数均方根Z2与分形维数D的关系图

    Figure  2.   Relationship between fractal dimension D and root-mean square of first derivative of profile Z2

    图  3   具有不同表面粗糙度的砂岩裂隙试样

    Figure  3.   Fractured sandstone specimens with different roughnesses

    图  4   流量Q与压力梯度-▽p关系图

    Figure  4.   Relationship between flow rate Q and pressure gradient -▽p

    图  5   黏性渗透率kv和惯性渗透率ki与平均开度bm和分形维数D的关系图

    Figure  5.   Dependency of viscous (kv) and inertial (ki) permeabilities on mean aperture bm and fractal dimension D

    图  6   水力开度bh与平均开度bm和分形维数D的关系

    Figure  6.   Variation of hydraulic aperture bh with mean aperture bm and fractal dimension D

    图  7   惯性渗透率ki与平均开度bm和分形维数D的关系

    Figure  7.   Variation of inertial permeability ki with mean aperture bm and fractal dimension D

    图  8   三维裂隙模型边界条件

    Figure  8.   Boundary conditions for three-dimensional fracture model

    图  9   网格数量敏感性分析

    Figure  9.   Sensitivity analysis of mesh of numerical solutions

    图  10   惯性渗透率ki作为平均开度bm和分形维数D的函数

    Figure  10.   Inertial permeability ki as a function of mean aperture bm and fractal dimension D

  • [1]

    CHEN Y D, SELVADURAI A P S, ZHAO Z H. Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confining stresses[J]. Computers and Geotechnics, 2021, 130: 103910. doi: 10.1016/j.compgeo.2020.103910

    [2]

    SNOW D T. A Parallel Plate Model of Fractured Permeable Media[D]. Berkeley: University of California of Berkeley, 1965.

    [3]

    LOMIZE G M. Flow in Fractured Rock[M]. Moscow: Gosemergoizdat, 1951.

    [4]

    LOUIS C. Rock hydraulics[M]// Rock Mechanics. Vienna: Springer Vienna, 1972.

    [5] 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. doi: 10.3321/j.issn:1000-4548.1995.05.004

    SU Baoyu, ZHAN Meili, ZHAO Jian. Study on fracture seepage in the imitative nature roke[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.004

    [6]

    XIONG X B, LI B, JIANG Y J, et al. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1292-1302. doi: 10.1016/j.ijrmms.2011.09.009

    [7]

    LIU R C, JING H W, HE L X, et al. An experimental study of the effect of fillings on hydraulic properties of single fractures[J]. Environmental Earth Sciences, 2017, 76(20): 684. doi: 10.1007/s12665-017-7024-8

    [8]

    ZHANG Z Y, NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477(16): 139-151. http://www.sciencedirect.com/science/article/pii/S0022169412010037

    [9]

    CHEN Y F, ZHOU J Q, Hu S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006. doi: 10.1016/j.jhydrol.2015.09.021

    [10]

    SHAO J L, ZHANG Q, SUN W B, et al. Numerical simulation on non-darcy flow in a single rock fracture domain inverted by digital images[J]. Geofluids, 2020, 2020: 1-13. http://www.xueshufan.com/publication/3037631765

    [11]

    BAGHBANAN A, JING L R. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 704-719. doi: 10.1016/j.ijrmms.2006.11.001

    [12]

    ZHAO Z H, LI B, JIANG Y J. Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2279-2286. doi: 10.1007/s00603-013-0497-1

    [13]

    ZHANG X, SANDERSON D J. Effects of stress on the two-dimensional permeability tensor of natural fracture networks[J]. Geophysical Journal International, 1996, 125(3): 912-924. doi: 10.1111/j.1365-246X.1996.tb06034.x

    [14] 速宝玉, 詹美礼, 张祝添. 充填裂隙渗流特性实验研究[J]. 岩土力学, 1994, 15(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm

    SU Baoyu, ZHAN Meili, ZHANG Zhutian. Experimental research of seepage characteristic for filled fracture[J]. Rock and Soil Mechanics, 1994, 15(4): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm

    [15] 王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. doi: 10.11779/CJGE201607013

    WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) doi: 10.11779/CJGE201607013

    [16]

    NI X D, NIU Y L, WANG Y, et al. Non-darcy flow experiments of water seepage through rough-walled rock fractures[J]. Geofluids, 2018, 2018: 1-12. http://doc.paperpass.com/foreign/rgArti2018282828152.html

    [17]

    RONG G, TAN J, ZHAN H B, et al. Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture[J]. Journal of Hydrology, 2020, 589: 125162. doi: 10.1016/j.jhydrol.2020.125162

    [18]

    YIN P J, ZHAO C, Ma J J, et al. Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104293. http://www.sciencedirect.com/science/article/pii/S1365160919310032

    [19] 周新, 盛建龙, 叶祖洋, 等. 岩体粗糙裂隙几何特征对其Forchheimer型渗流特性的影响[J]. 岩土工程学报, 2021, 43(11): 2075-2083. doi: 10.11779/CJGE202111014

    ZHOU Xin, SHENG Jianlong, YE Zuyang, et al. Effects of geometrical feature on Forchheimer- flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. (in Chinese) doi: 10.11779/CJGE202111014

    [20]

    ZHOU J Q, CHEN Y F, WANG L C, et al. Universal relationship between viscous and inertial permeability of geologic porous media[J]. Geophysical Research Letters, 2019, 46(3): 1441-1448. doi: 10.1029/2018GL081413

    [21]

    DETWILER R L. Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). http://www.onacademic.com/detail/journal_1000035647835010_76bb.html

    [22]

    OGILVIE S R, ISAKOV E, GLOVER P W J. Fluid flow through rough fractures in rocks. Ⅱ: A new matching model for rough rock fractures[J]. Earth and Planetary Science Letters, 2006, 241(3-4): 454-465. http://www.onacademic.com/detail/journal_1000035381379510_8e06.html

    [23]

    MYERS N O. Characterization of surface roughness[J]. Wear, 1962, 5(3): 182-189. http://www.sciencedirect.com/science/article/pii/0043164862900029

    [24]

    ZHOU J Q, WANG L C, LI C D, et al. Effect of fluid slippage on eddy growth and non-Darcian flow in rock fractures[J]. Journal of Hydrology, 2020, 581: 124440.

  • 期刊类型引用(8)

    1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
    2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
    3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
    4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
    5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
    6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
    7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
    8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术

    其他类型引用(3)

图(10)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  65
  • PDF下载量:  131
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-03-20
  • 网络出版日期:  2023-06-07
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回