Experimental study on anisotropy of saturated coral sand under complex stress conditions
-
摘要: 各向异性是珊瑚砂的固有属性。对饱和南沙珊瑚砂开展了一系列不排水单向剪切试验,探究了固结应力方向角α0和单向加载方向角αm对饱和珊瑚砂不排水反应的影响。α0和αm对饱和珊瑚砂的不排水反应均有显著影响,且α0与αm的耦合作用对其不排水反应的影响更为复杂。对所有试验的应力条件,饱和珊瑚砂的超静孔压ue均呈现出先增大后减小的趋势。α0不同时饱和珊瑚砂的相变强度SPT、有效内摩擦角ϕ′PT与αm的关系存在显著差异。发现饱和珊瑚砂的相变强度SPT与无量纲参数β存在事实上的线相关性,其中,β是以α0,αm为变量的余弦函数。随着广义剪应力qg的增大,饱和珊瑚砂呈现出明显的应变硬化现象。Abstract: Anisotropy is the inherent property of coral sand. A series of undrained monotonic shear tests are carried out on the saturated Nansha coral sand by using the GDS hollow cylinder torsional shear apparatus. The effects of consolidation stress direction angle α0 and monotonic loading direction angle αm on the undrained response of saturated coral sand are investigated. The test results show that α0 and αm have significant influences on the undrained response of saturated coral sand. The undrained response characteristics of coral sand will become more complex under the coupling effects of α0 and αm. For all the test conditions considered, the excess pore water pressure ue of saturated coral sand presents contraction first and then dilatancy trend. The change of the shear resistance (SPT) and its effective angle (ϕ′PT) mobilized at the phase transformation state along with αm are significantly different for various α0. There is a unique linear correlation between SPT and the dimensionless parameter β, which is a cosine function with α0 and αm as variables. With the increase of the generalized shear stress qg, obvious strain hardening phenomenon can be observed for the samples.
-
-
表 1 试验方案
Table 1 Summary of test schemes
试验编号/No. 固结条件 加载条件 备注 p′0/kPa b0 Rc α0/(°) bm αm/(°) 1 100 — 1 — 0.5 0 均等固结 2 22.5 3 45 4 67.5 5 90 6 100 0.5 1.5 0 0.5 0 各向异性固结 7 22.5 8 45 9 67.5 10 90 11 100 0.5 1.5 45 0.5 0 12 22.5 13 45 14 67.5 15 90 16 100 0.5 1.5 90 0.5 0 17 22.5 18 45 19 67.5 20 90 -
[1] 马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981–988. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981–988. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml
[2] 朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831–1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831–1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
[3] 陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389–1392. doi: 10.3969/j.issn.1000-7598.2005.09.008 CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
[4] 刘洋. 砂土的各向异性强度准则: 应力诱发各向异性[J]. 岩土工程学报, 2013, 35(3): 460–468. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml LIU Yang. Anisotropic strength criteria of sand: stress-induced anisotropy [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460–468. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml
[5] KATO S, ISHIHARA K, TOWHATA I. Undrained shear characterstics of saturated sand under anisotropic consolidations[J]. Soils and Foundations, 2001, 41(1): 1–11. doi: 10.3208/sandf.41.1
[6] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179–188. doi: 10.3208/sandf.38.3_179
[7] WONG R K S, ARTHUR J R F. Induced and inherent anisotropy in sand[J]. Géotechnique, 1985, 35(4): 471–481. doi: 10.1680/geot.1985.35.4.471
[8] SATO K, YOSHIDA N. Effect of Principal stress direction on undrained cyclic shear behaviour of dense sand[C]// Proeeedings of the Ninth International Offshore and Polar Engineering Conference, 1999: 542–547. Brest.
[9] CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317–331. doi: 10.1680/jgeot.18.P.180
[10] 于艺林, 张建民, 童朝霞, 等. 定轴排水剪切试验中各向异性砂土的力学响应[J]. 岩土力学, 2011, 32(6): 1637–1642. doi: 10.3969/j.issn.1000-7598.2011.06.007 YU Yi-ling, ZHANG Jian-min, TONG Zhao-xia, et al. Behavior of anisotropic mica sand under fixed principal stress axes drained shear test[J]. Rock and Soil Mechanics, 2011, 32(6): 1637–1642. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.007
[11] 罗强, 李晓磊, 王忠涛. 初始各向异性砂土不排水剪切特性试验研究[J]. 大连理工大学学报, 2019, 59(6): 629–637. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm LUO Qiang, LI Xiao-lei, WANG Zhong-tao. Experimental study of shear behavior of inherent anisotropy sand in undrained condition[J]. Journal of Dalian University of Technology, 2019, 59(6): 629–637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm
[12] 杨仲轩, 李相崧, 明海燕. 砂土各向异性和不排水剪切特性研究[J]. 深圳大学学报(理工版), 2009, 26(2): 158–163. doi: 10.3969/j.issn.1000-2618.2009.02.010 YANG Zhong-xuan, LI Xiang-song, MING Hai-yan. Fabric anisotropy and undrained shear behavior of granular soil[J]. Journal of Shenzhen University (Science and Engineering), 2009, 26(2): 158–163. (in Chinese) doi: 10.3969/j.issn.1000-2618.2009.02.010
[13] 陈伟, 张吾渝, 常立君, 等. 定向剪切应力路径下击实黄土各向异性试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4320–4324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm CHEN Wei, ZHANG Wu-yu, CHANG Li-jun, et al. Experimental study of anisotropy of compacted loess under directional shear stress path[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4320–4324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm
[14] AGHAJANI F H, SALEHZADEH H. Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf[J]. Arabian Journal of Geosciences, 2015, 8(10): 8197–8217. doi: 10.1007/s12517-014-1758-3
[15] HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355–383. doi: 10.1680/geot.1983.33.4.355
[16] CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77–93. doi: 10.1016/j.enggeo.2016.02.008
[17] Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D. 4254—14[S]. 2006.
[18] Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D. 4253—14[S]. 2006.
[19] 土的工程分类标准: GB/T 50145—2007[S]. 2008. GB/T 50145— 2007 Standard for Engineering Classification of Soil[S]. 2008. (in Chinese)
[20] 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋学报, 2000, 19(2): 1–8. doi: 10.3969/j.issn.1009-5470.2000.02.001 SUN Zong-xun. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000, 19(2): 1–8. (in Chinese) doi: 10.3969/j.issn.1009-5470.2000.02.001