Field tests on irrigation infiltration in thick loess
-
摘要: 黄土台塬地带频发的滑坡灾害与农业灌溉活动密切相关。为研究水分在原位黄土中的入渗规律,在陕西泾阳南塬开展了场地直径为20 m的灌溉入渗试验,分析了浸水过程中入渗水量,土体体积含水率、基质吸力和孔隙气压的变化规律,揭示了灌溉水在原位黄土中的入渗过程。监测结果表明:①持续灌溉条件下,湿润锋下移深度大于11.0 m,初始入渗率较高,随后降低并趋于稳定,稳定入渗率略小于表层土体的渗透系数。②马兰黄土中存在平行于塬边的竖向裂隙,裂隙最大宽度约为15.0 mm,灌溉水易沿贯通裂隙产生优势入渗。③第一层古土壤(S1)为透水性地层,当湿润锋抵达S1下部时下移受阻而移动速率降低,产生最高水头为44 cm的瞬态滞水。④灌溉水入渗过程中孔隙气体被压缩而气压升高,在湿润锋到达前产生气阻效应;不同深度处土体的最大孔隙气压为1.1~4.3 kPa。Abstract: Frequent irrigation activities have triggered numerous landslide hazards along the margins of the loess platform. For a better understanding of the process of irrigation water penetrating through stratified loess sediments, a full-scale field infiltration experiment with a diameter of 20 m is conducted on the South Jingyang tableland, Shaanxi Province, China. The amount of irrigation water, volumetric water content, matric suction and pore-air pressure are monitored to reveal the infiltration process of loess sediments. The monitoring results can be drawn as follows: (1) The propagation of wetting front is more than 11 m under the ponding condition. The infiltration rate is initially high, then decreases gradually and finally approaches a constant value less than the saturated hydraulic conductivity of the soil in shallow depth. (2) The vertical fractures parallelling to the edge of the tableland in Malan loess are revealed through vertical shaft, which has an aperture of less than 15 mm. The preferential flow is observed in the preferential path of the Malan loess layer. (3) The first paleosol layer (S1) is proved to be permeable, and a transient perched water with a waterhead less than 44 cm is developed above the lower part of S1. (4) The pore-air in soil is compressed, and an air entrapment ahead of wetting front is observed during wetting period. The maximum pore-air pressure measured in loess sediments varies from 1.1 kPa to 4.3 kPa.
-
Keywords:
- loess /
- field monitoring /
- infiltration process /
- wetting front /
- preferential flow /
- air entrapment
-
-
表 1 场地土体基本物理性质
Table 1 Physical properties of soil
土层 相对质量密度Gs 塑限wP/% 液限wL/% 黏粒含量/% 粉粒含量/% L1 2.73 16.4 34.0 20.4~26.1 73.9~79.6 S1 2.64 19.6 35.2 23.2~29.2 70.8~76.8 L2 2.72 16.2 31.0 17.5~24.6 75.4~82.5 -
[1] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684–691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm PENG Jian-bing, LIN Hong-zhou, WANG Qi-yao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684–691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm
[2] 许领, 戴福初, 闵弘, 等. 泾阳南塬黄土滑坡类型与发育特征[J]. 地球科学, 2010, 35(1): 155–160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001019.htm XU Ling, DAI Fu-chu, MIN Hong, et al. Loess landslide types and topographic features at South Jingyang Plateau, China[J]. Earth Science (Journal of China University of Geosciences), 2010, 35(1): 155–160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001019.htm
[3] LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: J Wiley, 2004.
[4] 朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845–854. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18196.shtml ZHU Cai-hui, LI Ning. Moisture effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845–854. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18196.shtml
[5] 雷祥义. 陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J]. 工程地质学报, 1995, 3(1): 56–64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ501.006.htm LEI Xiang-yi. The hazards of loess landslides in the southern tableland of Jingyang County, Shaanxi and their relationship with the channel water into fields[J]. Journal of Engineering Geology, 1995, 3(1): 56–64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ501.006.htm
[6] 金艳丽, 戴福初. 灌溉诱发黄土滑坡机理研究[J]. 岩土工程学报, 2007, 29(10): 1493–1499. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12636.shtml JIN Yan-li, DAI Fu-chu. The mechanism of irrigation-induced landslides of loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1493–1499. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12636.shtml
[7] 许强, 亓星, 修德皓, 等. 突发型黄土滑坡的临界水位研究—以甘肃黑方台黄土滑坡为例[J]. 水利学报, 2019, 50(3): 315–322. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903004.htm XU Qiang, QI Xing, XIU De-hao, et al. Critical water level of abrust loess landslides: a case study in Heifangtai, Gansu Province[J]. Journal of Hydraulic Engineering, 2019, 50(3): 315–322. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903004.htm
[8] 马耀光, 李书琴, 李世清, 等. 灌溉条件下黄土层的水盐效应研究[J]. 西北农林科技大学学报(自然科学版), 2003(5): 64–68. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305015.htm MA Yao-guang, LI Shu-qin, XU Yong-gong, et al. Effects of irrigation on water and salt in loess layer[J]. Jour of North west Sci-Tech Univ of Agri and For (Nat Sci Ed), 2003, 31(5): 64–68. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305015.htm
[9] 吴玮江, 王念秦. 甘肃滑坡灾害[M]. 兰州: 兰州大学出版社, 2006. WU Wei-jiang, WANG Nian-qin. Landslide Hazards in Gansu[M]. Lanzhou: Lanzhou University Press, 2006. (in Chinese)
[10] 张先林, 许强, 彭大雷, 等. 基于三维高密度电法的黄土灌溉水入渗方式研究[J]. 地球物理学进展, 2019, 34(2): 840–848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201902055.htm ZHANG Xian-lin, XU Qiang, PENG Da-lei, et al. Study on the infiltration mode of irrigation water in loess based on three-dimensional high-density electrical method[J]. Progress in Geophysics, 2019, 34(2): 840–848. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201902055.htm
[11] 张常亮, 李萍, 李同录, 等. 黄土中降雨入渗规律的现场监测研究[J]. 水利学报, 2014, 45(6): 728–734. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406012.htm ZHANG Chang-liang, LI Ping, LI Tong-lu, et al. In-situ observation on rainfall infiltration in loess[J]. Journal of Hydraulic Engineering, 2014, 45(6): 728–734. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406012.htm
[12] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65–74. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14490.shtml YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65–74. (in Chinese)) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14490.shtml
[13] WANG W, WANG Y, SUN Q, et al. Spatial variation of saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau, China[J]. Engineering Geology, 2018, 236: 70–78.
[14] HAMMECKER C, ANTONINO A C D, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of air entrapment[J]. European Journal of Soil Science, 2003, 54: 491–503.
[15] WANG Z, FEYEN J, VAN Genuchten, et al. Air entrapment effects on infiltration rate and flow instability[J]. Water Resources Research, 1998, 34: 213–222.