Thermo-elastoplastic constitutive model for municipal solid waste (MSW) considering temperature effects and fiber reinforcement
-
摘要: 考虑填埋场内垃圾土成分的复杂性和有机质降解产热导致的温度升高,根据不同温度不同纤维材料含量垃圾土的三轴试验结果,表明温度和纤维材料是影响垃圾土力学特性的关键因素,由此将垃圾土看作是类土材料和纤维材料的复合体。荷载作用下垃圾土的力学特性取决于类土材料和纤维材料的共同作用,认为温度变化只影响垃圾土的体积变形,提出了考虑温度效应的塑性体应变的硬化规律和纤维材料加筋作用的演化方程。通过构建一个新的反映温度效应和纤维加筋作用的塑性势函数,并依据相关联流动性法则导出了适用于垃圾土的热-弹塑性本构模型。通过对比文献中已有垃圾土的三轴试验结果,表明模型计算值与试验结果具有较高的吻合程度,能够很好地模拟垃圾土应力–应变曲线上翘和体应变持续增加的变化特征,以及较高围压下强度较大、较高纤维含量强度较大、较高温度下强度较小的垃圾土力学特性;在体积变形预测方面,模型计算值与试验结果虽有所偏差,但还是较好地捕捉到了较高围压下体应变较小、较高纤维含量体应变有所增大、较高温度下体应变略大的变形特征。由此可见,所建垃圾土的本构模型能够较为准确地反映围压、纤维含量以及温度对垃圾土应力–应变关系特性的影响规律,有效验证了模型的合理性。Abstract: Considering the composition complexity of municipal solid waste (MSW) and the temperature rise caused by degradation of organic matters, according to the triaxial test results of MSW with different fiber contents under different temperatures, it is shown that the temperatures and fiber materials are the key factors affecting the mechanical properties of MSW. Therefore, MSW can be regarded as a composite of soil-like materials and fiber materials, whose mechanical properties depend on the combined interaction of the two materials. It is assumed that the temperatures only affect the volumetric deformation of MSW, and the fiber reinforcement effects are gradually apparent during loading. Based on this, the hardening law of plastic volumetric strain considering the temperature effects and the evolution equation reflecting the reinforcement effects of fiber materials are both proposed. Through the new plastic potential function developed with reflecting the effects of the temperatures and fiber reinforcement, the thermo-elastoplastic constitutive model is derived for MSW using the associated flow rule. Compared with the test results of different MSW, those of the proposed model are in good agreement with the test data. The main features of upward curvature of stress-strain curves and continuously increasing volumetric strain with axial stain are better reproduced by the proposed model as well as other mechanical properties of MSW such as the greater strength under higher confining pressure, greater strength with higher fiber content, and lower strength at higher temperatures. Although the calculations of the proposed model have some deviation from the test results in terms of volume change behaviors, the main volume deformation characteristics of MSW are well captured by the proposed model, including the smaller volumetric strain under higher confining pressure, lager volumetric strain with higher fiber content, and slightly larger volumetric strain at higher temperature. In conclusion, the proposed model can accurately reflect the influences of confining pressure, fiber content and temperature on the stress-strain and volumetric strain behavior of MSW, which effectively verifies the retionality of the constitutive model.
-
0. 引言
某护岸工程采用的大圆筒结构似于无底、无隔墙的圆形沉箱结构,可以直接建在基床上或硬基础上,广泛地应用于岸壁码头、突堤码头及系船柱等港口水工构筑物,主要靠自重和筒壁与内填料的相互作用来抵挡外力,因具有结构简单、用料量少、结构受力条件好、施工速度快、造价低、耐久性好的优点,自20世纪80年代开始进行了一些工程实践[1-2]。
由于大圆筒结构薄壳和曲面受力特征,其与土体相互作用更加复杂,众多学者在室内模型试验、离心模型试验及数值模拟方面均取得了较多的科研成果。刘建起等[3]采用小型室内模型试验对非沉入式无底圆筒内填料压力与结构倾覆过程中内填料摩擦力、结构基底应力及抗倾稳定性进行了研究;竺存宏等[4]进行了外径为1.2 m的圆筒模型试验,分析了大圆筒结构在倾覆失稳过程中作用在筒内外壁上的土压力变化特征。徐光明等[5]针对软黏上地基上深埋式大圆筒码头结构进行了离心机模型试验,就大圆筒的深高比、径高比和筒壁摩擦作用对结构工作性状的影响规律进行了初步探讨。陈福全等[6]采用三维有限元对某实际工程采用的大圆筒码头结构进行了分析,筒体采用8节点非协调元离散,筒土界面采用三维刚塑性接触面单元模拟,研究了大直径圆筒码头的工作性状。
已有的研究主要集中在沉入式大圆筒结构与软土地基相互作用,较少涉及到基床式大圆筒结构,尤其是对于波浪荷载作用下大直径圆筒结构稳定性认识不足,本文采用水位差法等效模拟波浪荷载,通过离心模型试验技术研究某护岸工程大圆筒结构位移性状、内力反应及土压力变化规律,验证大圆筒结构在设计波浪荷载作用下稳定性。
1. 试验方案
1.1 试验设备
试验在南京水利科学研究院NHRI60g·t中型土工离心机上开展,如图 1。该机的有效半径2 m,最大加速度200g,最大负荷300 kg,离心机容量(最大离心加速度与最大负荷乘积)达60 g·t。试验用模型箱的内部有效尺寸为950 mm×450 mm×330 mm(长×高×宽),其一侧面为有机玻璃窗口,便于监控试验过程。大直径钢圆筒护岸和防波堤结构的水平位移和竖向沉降以及筒侧土压力采用图 2所示的激光位移计和图 3所示的薄片式土压力盒测量。
1.2 模型布置
根据大直径钢圆筒护岸结构断面几何尺寸,并结合模型布置、模型制作、模型测量等因素,选定模型比尺n = 200,模型布置见图 4。
1.3 材料模拟
一般来说,离心模型试验中所有材料应该选用应与原型相同,因此,模型结构物仍采用与原型相同的材料进行制作。
原型护岸结构物为大直径钢圆筒,其直径30 m、高度为32.5 m、壁厚22 mm,经过计算,相应的模型圆筒结构直径为150 mm、高度为162.5 mm。采用与原型同样材质的钢或不锈钢(其弹模与钢材接近),其壁厚0.11 mm。
试验土料取自现场,将上部淤泥②1、粉质黏土③1、粉质黏土③2、粉质黏土④2、黏土④2、粉质黏土④3和黏土④3合并,成为厚度18.20 m黏土-粉质黏土合并层,以地基强度指标作为主要模拟量,合并层地基不排水强度目标值为90 kPa。对于模型中砂层,控制其密实度制作而成。黏土层物理力学指标见表 1。
块石等大体积护坡材料,按模型相似比计算后制作模拟,三向土工垫用土工滤膜进行模拟,原型现浇封顶混凝土层用铝合金圆盘制作模拟。
表 1 土的物理力学性质指标Table 1. Physical properties of soils土名 厚度/m 含水率/% 密度/(g·cm-3) 不排水强度/kPa 淤泥②1 1.10 35.2 1.86 3.0 粉质黏土③1 2.00 25.1 1.99 37.0 粉质黏土③2 3.40 23.2 2.02 75.8 粘土-粉质黏土④2 4.30 26.8 1.96 83.1 粘土-粉质黏土④3 7.40 24.5 1.99 128.5 1.4 测试技术
位移测量采用了激光位移传感器,在大直径钢圆筒模型顶部设置了一个铝合金片光靶,钢圆筒模型筒体水位面以上位置可作为一个光靶,共布置了2个侧向位移测点;沉降测点位于钢圆筒顶部铝合金圆盘伸出部位。
土压力测量采用了进口薄片式微型土压力盒,如图 4所示,共布置了4个土压力测点,海侧筒壁面上2个,陆侧筒壁面上2个,其位置分别对应于原型标高-24.5,-28.5 m。
为了掌握和控制大直径钢圆筒护岸模型两侧水位,采用微型孔隙水压力计进行水压力测量,如图 4所示,共布置了4个水压力测点,海陆两侧各2个测点。
同时在大直径钢圆筒模型筒体4个高度位置处设置了环向正应力测点,如图 4所示,从上至下,4个测点位置分别对应于原型标高-5.0,-12.2,-19.4,-26.6 m。
1.5 水位差法等效模拟波浪荷载
大直径钢圆筒护岸所承受的波浪荷载作用,具体可用各种最不利工况中波峰或波谷时所对应的波压力和波吸力进行表征,无论波压力还是波吸力,对大圆筒产生的力学效应均可归结为一个侧向滑动力和一个转动力矩,使大圆筒发生侧向滑动和倾转。因此,可在模型试验中,通过调整大圆筒海侧和陆侧的水位,产生一个等效的侧向滑动力和一个等效的转动力矩,使大圆筒发生侧向滑动和倾转。基于上述分析,图 5为水位差法模拟等效波浪荷载的原理示意图,鉴于筒体在波浪荷载作用下的稳定性主要体现在其力矩作用所产生的转动效应上,因此,水位控制模拟法中优先考虑力矩等效,再考虑滑动力等效,需要说明的是,该方法将波浪荷载作为集中荷载考虑,且并未涉及波浪荷载对地基强度弱化效应的影响。具体做法是提高陆侧水位高度,高度增加值为Δh2,陆侧作用力由F10增加至F11,陆侧附加力为ΔF1=F11-F10;同时降低海侧水位高度,减小值为Δh1,海侧作用力由FS0减小至FS1,海侧附加力为ΔFS=FS0−FS1。假设圆筒模型在波浪荷载作用下绕图 5中所示o点转动,海陆侧附加力对应o点力臂分别为hs和hl。调整后的总附加滑动力ΔF和总附加滑动力矩ΔM分别如下所示:
ΔF=ΔF1+ΔFS, (1) ΔM=ΔF1×h1+ΔFS×hS。 (2) 1.6 试验程序
试验准备:制作结构物。
制作模型:制备地基,放置模型结构物,筒内回填,埋设和安装传感器,设置溢流孔。
恢复自重应力:按施工速率控制离心机加速度上升速率至200g,并运行1 h,期间进行数据采集。
模型试验:筒内放入回填料,两侧放置护底块石,按施工速率控制离心机加速度上升速率至200g,并稳速运行30 min,相当于模拟了原型运行期833 d,期间慢慢升高护岸陆侧的水位直至达到设计水位;试验中,离心机加速阶段,相当于实际工程的施工期;离心机稳速阶段,即代表工程进入运行期。
2. 试验结果分析
本文给出的试验结果均已换算至原型。
2.1 水位控制过程
大直径钢圆筒护岸模型置于离心机吊篮中,启动离心机升高其模型加速度,同时缓慢升高护岸陆侧的水位,如图 6所示,约在431 d时,模型达到设计加速度200g,约在667 d,两侧水位差达到6.9 m,约在1000 d后,两侧水位差回落至6.9 m,并维持在6.9 m上下。当模型护岸两侧水位差满足筒前海侧水位面为-4.91 m,筒后陆侧水位面为2.0 m,这就等于给大直径钢圆筒护岸结构施加了等效波浪力荷载,即25 a一遇波吸力荷载。
2.2 位移性状
图 7给出了大直径钢圆筒护岸模型加速度升高和两侧水位差增大过程中筒体侧向位移随时间的发展过程曲线,其中上测点高出模型筒顶15 mm,下测点低于模型筒顶15 mm。从图可见,伴随着加速度的升高和大直径钢圆筒护岸模型两侧水位差逐渐增大,筒顶上测点和下测点两处侧向位移读数发展迅速。对应于两侧水位差作用于钢圆筒护岸上波吸力荷载达到最大时,两个测点侧向位移读数也达到最大,分别约为343,357 mm。之后钢圆筒侧向位移渐渐趋于稳定值,分别为346,360 mm。由于大直径钢圆筒筒顶上下两各测点处侧向位移量相近,因此,在波吸力荷载作用下,筒体侧向位移模式近似为平移,位移量约353 mm。
图 8是大直径钢圆筒护岸模型在加速度升高和施工期波吸力荷载作用下筒体顶部沉降发展曲线。同样,伴随着加速度的升高,大直径钢圆筒两侧作用的水压力差逐渐增大,筒顶测点的沉降数值迅速增大。当加速度达到设计值200g时,此时护岸两侧水位差尚未达到最大,但沉降增长速率明显减小,沉降曲线出现一个明显的转折点。即筒体护岸竣工时,此时波浪荷载虽未达到设计值,但其沉降已基本完成,达到147 mm,之后缓慢增长,两年多(833 d)时间内沉降累计仅增加了约40 mm。对比图 7,8可知,大直径钢圆筒护岸两侧水位差对其筒体沉降的影响程度,远小于对筒体侧向位移的影响程度。
2.3 结构内力反应
环向拉应变随标高的分布如图 9所示,沿大直径钢圆筒海向和中心线高度方向布置的环向拉应变测点,筒壁标高在-19.4 m位置处的环向拉应变最大,即在筒身1/3高度部位的筒壁环向拉应变最大;沿陆向高度方向布置的环向拉应变测点,筒壁在-26.6 m位置处的环向拉应变最大。沿大直径钢圆筒圆周方向,3个位向筒壁处环向拉应变大小差别不大,只是在筒壁底部,陆向筒壁环向拉应变测值比海向和中心线出的大。
根据应变测量值推算筒壁环向拉应力在10~170 MPa,其均值约为90 MPa,处于钢圆筒材料允许应力范围内;筒壁内外压力差在10~250 kPa,其均值约为130 kPa。
2.4 土压力性状
图 10给出了筒体下部侧壁上的海侧两个测点土压力发展过程曲线。随着模型加速度的升高和大直径钢圆筒两侧水压力差的增大,两个测点处的土压力数值均迅速增大。当模型加速度达到设计值200g后一段时间,两侧水位差达到峰值并渐趋稳定后,两个测点土压力值也增大至最大并同时趋于稳定值。约1000天时,海侧标高-24.5 m和-28.5 m测点土压力分别达227 kPa和219 kPa,之后土压力数值基本稳定,这与结构位移变化规律基本一致,停机前,这两个测点土压力测值分别为227 kPa和211 kPa。筒壁土压力是由筒壁与周围邻近土体间挤密程度决定的,土压力趋于恒定值,表明筒体与周围邻近土体之间没有新的相对位移趋势,即筒体在波浪荷载作用下位移变形已经稳定,因此,从土压力发展变化角度看,大直径钢圆筒护岸结构在波浪荷载作用下是稳定安全的。
图 11给出了大直径钢圆筒护岸海侧两个测点的土压力-标高分布,同时图中给出了这两个测点之间的被动动土压力和2/3被动动土压力分布,计算公式如下:
pzp=σ′vKp+pw, (3) p2/3zp=2/3⋅σ′vKp+pw。 (4) 式中:pzp为计算点处朗肯被动土压力;p2/3zp为计算点处2/3朗肯被动土压力;σ′v为筒前海侧有效竖向应力。计算时,水下土体重度取9 kN/m3;Kp为朗肯被动土压力系数,是计算点处所在细砂土体内摩擦角的函数。计算时,中粗砂内摩擦角取34°;pw为计算点处海侧水压力。
从图 11可见,位于换填中粗砂土层中大直径钢圆筒护岸海侧两个测点处土压力,其实测值与朗肯被动土压力分布相去甚远,与2/3朗肯被动土压力分布也不完全相近,因此,位于换填中粗砂土层内大直径钢圆筒部分筒壁土压力分布规律尚需进一步的研究。
3. 结论
(1)大直径钢圆筒护岸结构在施工期25 a一遇波吸力荷载作用下,筒体近似平移,侧向位移量约353 mm,筒顶沉降约为187 mm,钢圆筒整体稳定。
(2)大直径钢圆筒侧向位移发展主要是由两侧水位差即波浪力荷载大小所决定,而筒体沉降则主要是由护岸自重所控制
(3)筒壁环向拉应力在10~170 MPa,其均值约为70 MPa,处于钢圆筒材料允许应力范围内。
(4)位于换填中粗砂土层中大直径钢圆筒护岸海侧两个测点处土压力随水位差增大至峰值后趋于稳定,表明筒体与周围邻近土体之间没有新的相对位移趋势。
(5)结果表明,大直径钢圆筒护岸结构在施工期25 a一遇波吸力荷载作用下是稳定安全的,满足使用要求,设计方案合理、可行。
-
图 5 模型计算值与文献[10]中试验结果的对比情况
Figure 5. Comparison between values by proposed model and test results by Machado et al
表 1 模型参数
Table 1 Model parameters
文献 λ κ μb e100 φc/(°) Δφ/(°) μf a1 a2 a3 α ξ Machado等[11] 0.163 0.006 0.3 1.93 22.0 3.21 0.45 7.88 0.43 0.138 — — Karimpour-Fard等[23] 0.456 0.030 0.3 2.13 19.2 3.00 0.45 41.46 9.51 0.245 — — Ramaiah等[24] 0.150 0.020 0.3 1.73 28.6 4.87 0.45 15.96 0.30 0.204 — — 姜兆起[25] 0.327 0.042 0.3 1.62 27.5 0.29 0.45 18.56 0.43 0.131 0.06 0.067 -
[1] EID H T, STARK T D, EVANS W D, et al. Municipal solid waste slope failure Ⅰ: waste ans foundation soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 408–419. doi: 10.1061/(ASCE)1090-0241(2000)126:5(408)
[2] BLIGHT G. Slope failures in municipal solid waste dumps and landfills: a review[J]. Waste Management & Research, 2008, 26(5): 448–463.
[3] FENG S J, CHANG J Y, SHI H, et al. Failure of an unfilled landfill cell due to an adjacent steep slope and a high groundwater level: a case of study[J]. Engineering Geology, 2019: 105320.
[4] SINGH M K, VILAR O M, CARVALHO M F. Application of a hyperbolic model to municipal solid waste[J]. Géotechnique, 2011, 61(7): 533–547. doi: 10.1680/geot.8.P.051
[5] 柯瀚, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm
[6] 陈云敏, 高登, 朱斌. 城市固体废弃物的复合指数应力–应变模型研究[J]. 岩土工程学报, 2009, 31(7): 1020–1029. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13307.shtml CHEN Yun-min, GAO Deng, ZHU Bin. Composite exponential stress-strain model of municipal solid waste and its application[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1020–1029. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13307.shtml
[7] 李修磊, 李金凤. 城市生活垃圾土的变形强度特性及其应力–应变模型[J]. 水文地质工程地质, 2016, 43(5): 70–75. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605010.htm LI Xiu-lei, LI Jin-feng. A study of deformation and strength properties and stress-stain model for municipal solid waste (MSW) [J]. Hydrogeology and Engineering Geology, 2016, 43(5): 70–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605010.htm
[8] SIVAKUMAR BABU G L, LAKSHMIKANTHAN P, SANTHOSH L G. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore[J]. Waste Management (New York, N Y), 2015, 39: 63–70. doi: 10.1016/j.wasman.2015.02.013
[9] CHOUKSEY S K, SIVAKUMAR BABU G L. Constitutive model for strength characteristics of municipal solid waste[J]. International Journal of Geomechanics, 2015, 15(2): 04014040. doi: 10.1061/(ASCE)GM.1943-5622.0000351
[10] MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironment Engineering, 2002, 128(11): 940–951. doi: 10.1061/(ASCE)1090-0241(2002)128:11(940)
[11] MACHADO S L, VILAR O M, CARVALHO M F. Constitutive model for long term municipal solid waste mechanical behavior [J]. Computers and Geotechnics, 2008, 35(5): 775–790. doi: 10.1016/j.compgeo.2007.11.008
[12] MACHADO S L, VILAR O M, CARVALHO M D F, et al. A constitutive framework to model the undrained loading of municipal solid waste [J]. Computers and Geotechnics, 2017, 85(2): 207–219.
[13] CHANG J Y, FENG S J. A constitutive model for municipal solid waste incorporating bounding surface plasticity and reinforcing effect[J]. Computers and Geotechnics, 2020, 123: 103592 doi: 10.1016/j.compgeo.2020.103592
[14] LÜ X, ZHAI X, HUANG M. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility[J]. Waste Management (New York), 2017, 69: 3–12. doi: 10.1016/j.wasman.2017.08.003
[15] 李修磊, 施建勇, 李金凤. 考虑纤维加筋作用的城市生活垃圾土弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1916–1924. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905034.htm LI Xiu-lei, SHI Jian-yong, LI Jin-feng. Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement[J]. Rock and Soil Mechanics, 2019, 40(5): 1916–1924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905034.htm
[16] HANSON J L, YESILLER N, OETTLE N K. Spatial and temporal temperature ditributions in municipal solid waste landfills[J]. Journal of Environmental Engineering, 2010, 136(8): 804–814. doi: 10.1061/(ASCE)EE.1943-7870.0000202
[17] LUETTICH S M, YAFRATE N. Measuring temperatures in an elevated temperature landfills[C]// Geo-Chicago, Chicago, Illinois, United States, 2016, GSP, Chicago.
[18] STARK T D, AKHTAR K, HUSSAIN M. Stability analysis for a landfill experiencing elevated temperature[C]// Geo-Florida, Orlando, Florida, United States, ASCE, 2010, Orlando.
[19] 姚祖强. 不同温度及含水率条件下垃圾土降解产热研究[D]. 南京: 河海大学, 2021. YAO Zu-qiang. The Heat Generation of Waste Degradation under Different Initial Temperatures and Water Contents[D]. Nanjing: Hohai University, 2015. (in Chinese)
[20] LIU X, SHI J, QIAN X, et al. One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation [J]. Waste Management (New York), 2011, 31(12): 2473–2483. doi: 10.1016/j.wasman.2011.07.013
[21] LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: An isotropic yield mechanism[J]. Computers and Geotechnics, 2003, 30: 649–660. doi: 10.1016/j.compgeo.2003.09.001
[22] FARVERO V, FERRARI A, LALOUI L. Thermo-mechanical volume change behaviour of Opalinus clay[J]. International Journal of Rock Mechanics Mining Sciences, 2016, 90: 15–25. doi: 10.1016/j.ijrmms.2016.09.013
[23] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学: 技术科学, 2011, 41(2): 158–169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Scientia Sinica (Technologica), 2011, 41(2): 158–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm
[24] ZHOU C, NG C W. A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52(8): 1101–1110. doi: 10.1139/cgj-2014-0229
[25] KARADEMIR T, FROST J D. Micro-scale tensile properties of single geotextile polypropylene filaments at elevated temperature[J]. Geotextiles and Geomembranes, 2014, 42(3): 201–213. doi: 10.1016/j.geotexmem.2014.03.001
[26] KARIMPOUR-FARD M, MACHADO S L, SHARIATMADARI N, et al. A laboratory study on the MSW mechanical behavior in triaxial apparatus[J]. Waste Management (New York), 2011, 31(8): 1807–1819. doi: 10.1016/j.wasman.2011.03.011
[27] RAMAIAH B J, RAMANA G V. Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing[J]. Waste Management, 2017, 63: 366–379. doi: 10.1016/j.wasman.2017.01.027
[28] 刘祎, 蔡国庆, 李舰, 等. 一个统一描述饱和—非饱和土温度效应的热-弹塑性本构模型[J]. 岩土力学, 2020, 41(10): 3279–3288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010013.htm LIU Yi, CAI Guo-qing, LI Jian, et al. A unified thermo elstoplastic constitutive model describing the temperature effect of saturated and unsaturated soils[J]. Rock and Soil Mechanics, 2020, 41(10): 3279–3288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010013.htm
[29] SHARIATMADARI N, MACHADO S L, NOORZAD A, et al. Municipal solid waste effective stress analysis[J]. Waste Management (New York), 2009, 29(12): 2918–2930. doi: 10.1016/j.wasman.2009.07.009
[30] 姜兆起. 温度影响下高塑料含量垃圾土强度变形特性试验研究[D]. 南京: 河海大学, 2018. JIANG Zhao-qi. Experimental Study on the Strength and Deformation Characteristics of MSW with High Plastic Content Under the Influence of Temperature[D]. Nanjing: Hohai University, 2018. (in Chinese)
-
期刊类型引用(11)
1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 . 百度学术
2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 . 百度学术
3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 . 百度学术
4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 . 百度学术
5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 . 百度学术
6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 . 百度学术
7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 . 百度学术
8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 . 百度学术
9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 . 百度学术
10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 . 百度学术
11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 . 百度学术
其他类型引用(2)