Unified evaluation method for soil liquefaction potential based on modern in-situ piezocone penetration tests
-
摘要: 静力触探(CPT)测试是国际上常用的砂质土液化判别技术,但无法反映孔隙水压力(孔压)对液化行为的影响。能够测试孔压的现代原位测试技术孔压静力触探(CPTU)对砂质土、粉质土具有更高的辨识度和灵敏度,因此在砂质土、粉质土液化评价方面具有独特的优势。通过编译的CPTU液化案例数据库,在简化应力框架下,通过粒子群优化核极限学习机算法、稳健搜索技术和非线性拟合优化分析建立了基于CPTU测试参数的液化阻力比(CRR7.5)模型,该模型包括修正的锥尖阻力(qt1N)和土类指数(Ic, BJ);其中Ic, BJ采用Jefferies和Davies提出的形式,包含了孔压参数比(Bq)。这样所提模型中土壤类型信息直接包含在液化判别公式中,无需根据土壤细粒含量进行贯入阻力的修正,更直接、更符合力学框架,适用于砂质土、粉质土等较广范围的土体;并通过内含Bq的土类指数Ic, BJ将砂质土和粉质土液化判别统一起来。最后用中国唐山地震液化案例证明所提模型的准确性和优越性。Abstract: The cone penetration test (CPT) is a commonly used technique to identify the liquefaction of sandy soil in the world but it cannot reflect the influences of pore water pressure (pore pressure) on the liquefaction behavior. The piezocone penetration test (CPTU), a modern in-situ test technique, can measure pore pressure, and has high identification and sensitivity to sandy soil and silty soil, so it has a unique advantage in liquefaction evaluation of sandy soil and silty soil. In this study, a liquefaction resistance ratio (CRR7.5) model based on CPTU test parameters is established under the simplified stress framework through the particle swarm optimization (PSO)-kernel limit learning machine (KLEM) algorithm, robust search technology and nonlinear fitting optimization analysis. The model includes modified cone resistance (qt1N) and soil behavior type index (Ic, BJ) as per Jefferies and Davies, including the pore pressure ratio (Bq). In this way, the soil type information in the proposed model is directly included in the liquefaction discrimination formula, and it does not need to modify the penetration resistance according to the content of soil fine content, which is more direct and more consistent with the mechanical framework, and is suitable for a wide range of soil, such as sandy soil and silty soil. The liquefaction discrimination of sandy soil and silty soil is unified by the Ic, BJ with the inclusion of Bq in the formulation. Finally, the accuracy and superiority of the proposed model are proved by a case study of Tangshan Earthquake liquefaction in China.
-
-
表 1 混淆矩阵
Table 1 Confusion matrix
模型预测 实际 液化 非液化 液化 TP FP 非液化 FN TN 表 2 历史案例各个参数值的范围
Table 2 Ranges of parameter values in historical case
指标 qt/MPa fs/kPa u2/kPa Bq σv/kPa σ′v/kPa qt1N Ic, BJ Ic, RW amax/g Mw CSR7.5 最小 0.2 0.2 -104.1 -0.26 26.0 18.2 2.5 0.59 0.98 0.09 5.9 0.04 最大 28.9 358.6 1195.8 0.82 314.5 159.5 304.7 3.39 3.44 0.79 7.8 0.85 注:qt,fs,u2分别为CPTU锥尖阻力、侧壁摩阻力、孔压水压力;σv,σ′v分别为总竖向应力、有效竖向应力;amax为地震加速度;Mw为震级。 表 3 敏感性分析结果
Table 3 Results of sensitivity analysis
模型 训练集OA 测试集OA LI = f(qt1N, Ic, BJ, σ′vo, CSR7.5) 97.1% 89.1% LI = f(qt1N, Ic, BJ, CSR7.5) 88.1% 81.5% LI = f(qt1N, σ′vo, CSR7.5) 87.7% 80.6% LI = f(qt1N, Ic, BJ, σ′vo) 78.3% 73.5% 表 4 不同模型液化判别训练集结果对比
Table 4 Comparison among different machine learning models in training dataset
模型 训练集 测试集 OA P R F OA P R F PSO-KELM 97.1% 97.2% 98.9% 0.980 89.1% 91.7% 94.3% 0.930 ELM 93.9% 92.6% 99.4% 0.959 87.3% 87.5% 91.4% 0.894 LS-SVM 96.1% 95.6% 99.4% 0.975 85.5% 86.9% 91.2% 0.890 LM-BP 89.4% 88.5% 96.1% 0.922 83.6% 86.5% 90.9% 0.886 表 5 不同水平下液化案例正确率
Table 5 Accuracy rates of liquefaction cases at different levels
Ic, BJ范围 土类 液化数 液化正判率 Ic, BJ < 1.25 砾质砂 12 83.3% 1.25 < Ic, BJ < 1.80 砂 101 87.1% 1.80 < Ic, BJ < 2.40 砂质混合物:纯净砂-粉砂 62 93.5% 2.40 < Ic, BJ < 2.76 粉质土:黏质粉土-粉质黏土 23 100% Ic, BJ > 2.76 黏土 31 100% -
[1] 陈国兴, 孔梦云, 李小军, 等. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 2015, 36(1): 9–27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm CHEN Guo-xing, KONG Meng-yun, LI Xiao-jun, et al. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 2015, 36(1): 9–27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm
[2] 蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019–1027. doi: 10.3321/j.issn:1000-6915.2008.05.018 CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019–1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
[3] SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249–1273. doi: 10.1061/JSFEAQ.0001662
[4] JUANG C H, CHEN C H, MAYNE P W. CPTU simplified stress-based model for evaluating soil liquefaction potential[J]. Soils and Foundations, 2008, 48(6): 755–770. doi: 10.3208/sandf.48.755
[5] ROBERTSON P K, WRIDE C E. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442–459. doi: 10.1139/t98-017
[6] MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032–1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)
[7] YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
[8] 袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4): 99–108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm YUAN Xiao-ming, CAO Zhen-zhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4): 99–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
[9] 段伟, 蔡国军, 刘松玉, 等. 多功能参数静力触探在地震液化判别方法中的应用进展研究[J]. 地震工程学报, 2020, 42(3): 764–776. doi: 10.3969/j.issn.1000-0844.2020.03.764 DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Progress of the application of the multifunctional cone penetration test in the seismic liquefaction discrimination method[J]. China Earthquake Engineering Journal, 2020, 42(3): 764–776. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.03.764
[10] AHMAD M, TANG X W, QIU J N, et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential[J]. Frontiers of Structural and Civil Engineering, 2021, 15(2): 490–505. doi: 10.1007/s11709-020-0669-5
[11] 胡记磊, 唐小微, 裘江南. 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37(6): 1745–1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm HU Ji-lei, TANG Xiao-wei, QIU Jiang-nan. Prediction of probability of seismic-induced liquefaction based on Bayesian network[J]. Rock and Soil Mechanics, 2016, 37(6): 1745–1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm
[12] ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021. online.
[13] BRAY J D, SANCIO R B, DURGUNOGLU T, et al. Subsurface characterization at ground failure sites in Adapazari, Turkey[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 673–685. doi: 10.1061/(ASCE)1090-0241(2004)130:7(673)
[14] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501.
[15] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(增刊1): 146–153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm YANG Xi-yun, GUAN Wen-yuan, LIU Yu-qi, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146–153. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm
[16] HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376–390. doi: 10.1007/s12559-014-9255-2
[17] KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 1995, Perth.
[18] JEFFERIES M G, DAVIES M P. Use of CPTU to estimate equivalent SPT N60[J]. Geotechnical Testing Journal, 1993, 16(4): 458–468. doi: 10.1520/GTJ10286J
[19] JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877–892. doi: 10.1680/geot.9.P.025
[20] JUANG C H, CHEN C J, TANG W H, et al. CPT-based liquefaction analysis, Part 1: determination of limit state function[J]. Géotechnique, 2000, 50(5): 583–592. doi: 10.1680/geot.2000.50.5.583
[21] CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessment using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141–150. doi: 10.1016/j.soildyn.2012.05.008
[22] KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27–44. doi: 10.1139/t11-085