• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于现代原位测试CPTU的土体液化势统一评价方法

段伟, 蔡国军, 刘松玉, 赵泽宁, 董晓强, 陈瑞锋

段伟, 蔡国军, 刘松玉, 赵泽宁, 董晓强, 陈瑞锋. 基于现代原位测试CPTU的土体液化势统一评价方法[J]. 岩土工程学报, 2022, 44(3): 435-443. DOI: 10.11779/CJGE202203005
引用本文: 段伟, 蔡国军, 刘松玉, 赵泽宁, 董晓强, 陈瑞锋. 基于现代原位测试CPTU的土体液化势统一评价方法[J]. 岩土工程学报, 2022, 44(3): 435-443. DOI: 10.11779/CJGE202203005
DUAN Wei, CAI Guo-jun, LIU Song-yu, ZHAO Ze-ning, DONG Xiao-qiang, CHEN Rui-feng. Unified evaluation method for soil liquefaction potential based on modern in-situ piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 435-443. DOI: 10.11779/CJGE202203005
Citation: DUAN Wei, CAI Guo-jun, LIU Song-yu, ZHAO Ze-ning, DONG Xiao-qiang, CHEN Rui-feng. Unified evaluation method for soil liquefaction potential based on modern in-situ piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 435-443. DOI: 10.11779/CJGE202203005

基于现代原位测试CPTU的土体液化势统一评价方法  English Version

基金项目: 

国家自然科学基金项目 52108332

国家自然科学基金项目 41877231

国家自然科学基金项目 42072299

中国博士后科学基金项目 2021M702421

详细信息
    作者简介:

    段伟(1989—),男,山西太原人,博士,博士后,从事现代原位测试技术等方面研究。E-mail: zbdxdw@163.com

    通讯作者:

    蔡国军, E-mail: focuscai@163.com

  • 中图分类号: TU413

Unified evaluation method for soil liquefaction potential based on modern in-situ piezocone penetration tests

  • 摘要: 静力触探(CPT)测试是国际上常用的砂质土液化判别技术,但无法反映孔隙水压力(孔压)对液化行为的影响。能够测试孔压的现代原位测试技术孔压静力触探(CPTU)对砂质土、粉质土具有更高的辨识度和灵敏度,因此在砂质土、粉质土液化评价方面具有独特的优势。通过编译的CPTU液化案例数据库,在简化应力框架下,通过粒子群优化核极限学习机算法、稳健搜索技术和非线性拟合优化分析建立了基于CPTU测试参数的液化阻力比(CRR7.5)模型,该模型包括修正的锥尖阻力(qt1N)和土类指数(Ic, BJ);其中Ic, BJ采用Jefferies和Davies提出的形式,包含了孔压参数比(Bq)。这样所提模型中土壤类型信息直接包含在液化判别公式中,无需根据土壤细粒含量进行贯入阻力的修正,更直接、更符合力学框架,适用于砂质土、粉质土等较广范围的土体;并通过内含Bq的土类指数Ic, BJ将砂质土和粉质土液化判别统一起来。最后用中国唐山地震液化案例证明所提模型的准确性和优越性。
    Abstract: The cone penetration test (CPT) is a commonly used technique to identify the liquefaction of sandy soil in the world but it cannot reflect the influences of pore water pressure (pore pressure) on the liquefaction behavior. The piezocone penetration test (CPTU), a modern in-situ test technique, can measure pore pressure, and has high identification and sensitivity to sandy soil and silty soil, so it has a unique advantage in liquefaction evaluation of sandy soil and silty soil. In this study, a liquefaction resistance ratio (CRR7.5) model based on CPTU test parameters is established under the simplified stress framework through the particle swarm optimization (PSO)-kernel limit learning machine (KLEM) algorithm, robust search technology and nonlinear fitting optimization analysis. The model includes modified cone resistance (qt1N) and soil behavior type index (Ic, BJ) as per Jefferies and Davies, including the pore pressure ratio (Bq). In this way, the soil type information in the proposed model is directly included in the liquefaction discrimination formula, and it does not need to modify the penetration resistance according to the content of soil fine content, which is more direct and more consistent with the mechanical framework, and is suitable for a wide range of soil, such as sandy soil and silty soil. The liquefaction discrimination of sandy soil and silty soil is unified by the Ic, BJ with the inclusion of Bq in the formulation. Finally, the accuracy and superiority of the proposed model are proved by a case study of Tangshan Earthquake liquefaction in China.
  • 各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。

    小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。

    结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。

    本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。

    土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]

    表  1  湛江黏土平均物理力学性质指标与颗粒组成
    Table  1.  Physical and mechanical indexes and particle composition of Zhanjiang clay
    重度γ/(kN·m-3)含水率w/%孔隙比e渗透系数K/(cm·s-1)液限wL/%塑限wP/%塑性指数IP结构屈服应力σk/kPa无侧限抗压强度/kPa灵敏度St颗粒组成/%
    >0.05/mm0.005~0.05/mm0.002~0.005/mm<0.002/mm
    17.152.981.442.73×10−859.628.131.5400143.57.28.239.520.731.6
    下载: 导出CSV 
    | 显示表格

    图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为α,即竖直方向试样为90°,水平方向试样为0°。针对α为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。

    图  1  试样示意图与试验设备
    Figure  1.  Schematic diagram of specimens and test apparatus

    试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:

    G=ρ(2πfH/β)2, (1)

    式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。

    试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。

    图2所示,不同方向试样动剪切模量G和剪应变γ的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ曲线随围压增大而上移,围压超过600~700 kPa,G-γ曲线随围压增长而下移,与通常软黏土G-γ曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ曲线规律影响较大。

    图  2  不同方向试样剪切模量G与剪应变γ关系
    Figure  2.  Relationship between shear modulus G and shear strainγ for specimens in different directions

    湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:

    τ=γa+bγ, (2)

    式中,a,b为拟合参数。式(2)可以写为

    1/G=a+bγ (3)

    式(3)中,当γ趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3曲线。随围压增大,不同方向试样Gmax/F(e)-σ3曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk左右时,曲线出现转折。

    图  3  不同方向试样Gmax/F(e)与围压σ3的关系
    Figure  3.  Relationship between Gmax /F(e) and confining pressure σ3 for specimens in different directions

    为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:

    Kα=Dα/D90°, (4)

    式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。

    Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角α变化,Kα整体上随α增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。

    图  4  不同方向试样Kα与围压σ3的关系
    Figure  4.  Relationship between Kα and confining pressure σ3 for specimens in different directions

    当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于σk时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。

    图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:

    Gmax/F(e)=A(1+(σmpa)n)1+B(1+(σmpa)n)(kr+1kr1+(ησmpc)λ) (5)

    式中 A,B,n,kr,ηλ为反映各种应力历史和土体性质的参数;σm为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk,不同方向试样压缩试验得到的σk差异较小,均取400 kPa。

    采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2

    图  5  不同方向试样的Gmax/F(e)与固结围压lgσ3关系曲线
    Figure  5.  Curves of Gmax/F(e) and confining pressure lgσ3 of specimens in different directions
    表  2  不同方向试样拟合参数
    Table  2.  Fitting parameters of specimens in different directions
    αA/MPaBnkrηλR2
    0°39.924890.166780.543090.350920.564336.429980.99251
    22.5°37.899510.159990.582640.354620.564266.371470.99075
    45°33.763280.151680.546420.377400.554026.384730.99432
    67.5°31.154760.157610.562540.424990.608896.077370.99727
    90°29.754220.157430.560670.444480.577506.056690.99835
    下载: 导出CSV 
    | 显示表格

    分析表2中拟合参数与试样方向的关系,可得参数A,kr,λ和试样轴线与土体沉积平面夹角α呈线性关系(图6),参数B,n,ηα增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。

    图  6  拟合参数A,krλ与试样方向的关系
    Figure  6.  Relationship between fitting parameters A, kr and λ with directions of specimens

    图6中参数A,kr,λ的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:

    Gmax/F(e)=(c1α+c2)(1+(σmpa)n)1+B(1+(σmpa)n)·((d1α+d2)+1(d1α+d2)1+(ησmpc)(e1α+e2)) (6)

    式中σm为围压;α表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pcσk,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。

    (1)在同一围压下,不同α试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kαα增大而减小。当围压低于和高于σk时,同一α试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。

    (2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在σk左右时出现转折。

    (3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。

  • 图  1   PSO-KELM算法流程图

    Figure  1.   Flow chart of PSO-KELM algorithm

    图  2   PSO-KELM模型迭代寻优过程

    Figure  2.   Iterative optimization process of PSO-KELM model

    图  3   PSO-KELM模型液化判别结果

    Figure  3.   Results of liquefaction discrimination of PSO-KELM model

    图  4   参数敏感性分析

    Figure  4.   Sensitivity analysis

    图  5   极限状态边界搜索点模型示意图

    Figure  5.   Schematic diagram of model for searching points on limit state boundary

    图  6   所提模型的CRR7.5预测散点图

    Figure  6.   Scattering of CRR7.5 predictions by proposed model

    图  7   所提模型的二维图:CRR7.5(CSR7.5)与qt1N

    Figure  7.   2-D graphs of proposed model: CRR7.5 (or CSR7.5) versus qt1N

    图  8   忽略Bq采用Ic, RW对所提CRR7.5模型的影响

    Figure  8.   Percentage change in CRR7.5 as a result of ignoring Bq in proposed model

    图  9   唐山场地T1的CPTU剖面

    Figure  9.   CPTU sounding profiles at location T1 in Tangshan sites

    图  10   场地T1的液化结果分析

    Figure  10.   Liquefaction results of analysis of Tangshan T1

    表  1   混淆矩阵

    Table  1   Confusion matrix

    模型预测 实际
    液化 非液化
    液化 TP FP
    非液化 FN TN
    下载: 导出CSV

    表  2   历史案例各个参数值的范围

    Table  2   Ranges of parameter values in historical case

    指标 qt/MPa fs/kPa u2/kPa Bq σv/kPa σv/kPa qt1N Ic, BJ Ic, RW amax/g Mw CSR7.5
    最小 0.2 0.2 -104.1 -0.26 26.0 18.2 2.5 0.59 0.98 0.09 5.9 0.04
    最大 28.9 358.6 1195.8 0.82 314.5 159.5 304.7 3.39 3.44 0.79 7.8 0.85
    注:qtfsu2分别为CPTU锥尖阻力、侧壁摩阻力、孔压水压力;σvσv分别为总竖向应力、有效竖向应力;amax为地震加速度;Mw为震级。
    下载: 导出CSV

    表  3   敏感性分析结果

    Table  3   Results of sensitivity analysis

    模型 训练集OA 测试集OA
    LI = f(qt1N, Ic, BJ, σvo, CSR7.5) 97.1% 89.1%
    LI = f(qt1N, Ic, BJ, CSR7.5) 88.1% 81.5%
    LI = f(qt1N, σvo, CSR7.5) 87.7% 80.6%
    LI = f(qt1N, Ic, BJ, σvo) 78.3% 73.5%
    下载: 导出CSV

    表  4   不同模型液化判别训练集结果对比

    Table  4   Comparison among different machine learning models in training dataset

    模型 训练集 测试集
    OA P R F OA P R F
    PSO-KELM 97.1% 97.2% 98.9% 0.980 89.1% 91.7% 94.3% 0.930
    ELM 93.9% 92.6% 99.4% 0.959 87.3% 87.5% 91.4% 0.894
    LS-SVM 96.1% 95.6% 99.4% 0.975 85.5% 86.9% 91.2% 0.890
    LM-BP 89.4% 88.5% 96.1% 0.922 83.6% 86.5% 90.9% 0.886
    下载: 导出CSV

    表  5   不同水平下液化案例正确率

    Table  5   Accuracy rates of liquefaction cases at different levels

    Ic, BJ范围 土类 液化数 液化正判率
    Ic, BJ < 1.25 砾质砂 12 83.3%
    1.25 < Ic, BJ < 1.80 101 87.1%
    1.80 < Ic, BJ < 2.40 砂质混合物:纯净砂-粉砂 62 93.5%
    2.40 < Ic, BJ < 2.76 粉质土:黏质粉土-粉质黏土 23 100%
    Ic, BJ > 2.76 黏土 31 100%
    下载: 导出CSV
  • [1] 陈国兴, 孔梦云, 李小军, 等. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 2015, 36(1): 9–27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm

    CHEN Guo-xing, KONG Meng-yun, LI Xiao-jun, et al. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 2015, 36(1): 9–27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm

    [2] 蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019–1027. doi: 10.3321/j.issn:1000-6915.2008.05.018

    CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019–1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018

    [3]

    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249–1273. doi: 10.1061/JSFEAQ.0001662

    [4]

    JUANG C H, CHEN C H, MAYNE P W. CPTU simplified stress-based model for evaluating soil liquefaction potential[J]. Soils and Foundations, 2008, 48(6): 755–770. doi: 10.3208/sandf.48.755

    [5]

    ROBERTSON P K, WRIDE C E. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442–459. doi: 10.1139/t98-017

    [6]

    MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032–1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)

    [7]

    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    [8] 袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4): 99–108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm

    YUAN Xiao-ming, CAO Zhen-zhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4): 99–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm

    [9] 段伟, 蔡国军, 刘松玉, 等. 多功能参数静力触探在地震液化判别方法中的应用进展研究[J]. 地震工程学报, 2020, 42(3): 764–776. doi: 10.3969/j.issn.1000-0844.2020.03.764

    DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Progress of the application of the multifunctional cone penetration test in the seismic liquefaction discrimination method[J]. China Earthquake Engineering Journal, 2020, 42(3): 764–776. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.03.764

    [10]

    AHMAD M, TANG X W, QIU J N, et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential[J]. Frontiers of Structural and Civil Engineering, 2021, 15(2): 490–505. doi: 10.1007/s11709-020-0669-5

    [11] 胡记磊, 唐小微, 裘江南. 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37(6): 1745–1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm

    HU Ji-lei, TANG Xiao-wei, QIU Jiang-nan. Prediction of probability of seismic-induced liquefaction based on Bayesian network[J]. Rock and Soil Mechanics, 2016, 37(6): 1745–1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm

    [12]

    ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021. online.

    [13]

    BRAY J D, SANCIO R B, DURGUNOGLU T, et al. Subsurface characterization at ground failure sites in Adapazari, Turkey[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 673–685. doi: 10.1061/(ASCE)1090-0241(2004)130:7(673)

    [14]

    HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501.

    [15] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(增刊1): 146–153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm

    YANG Xi-yun, GUAN Wen-yuan, LIU Yu-qi, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146–153. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm

    [16]

    HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376–390. doi: 10.1007/s12559-014-9255-2

    [17]

    KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 1995, Perth.

    [18]

    JEFFERIES M G, DAVIES M P. Use of CPTU to estimate equivalent SPT N60[J]. Geotechnical Testing Journal, 1993, 16(4): 458–468. doi: 10.1520/GTJ10286J

    [19]

    JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877–892. doi: 10.1680/geot.9.P.025

    [20]

    JUANG C H, CHEN C J, TANG W H, et al. CPT-based liquefaction analysis, Part 1: determination of limit state function[J]. Géotechnique, 2000, 50(5): 583–592. doi: 10.1680/geot.2000.50.5.583

    [21]

    CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessment using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141–150. doi: 10.1016/j.soildyn.2012.05.008

    [22]

    KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27–44. doi: 10.1139/t11-085

图(10)  /  表(5)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  28
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-02-28

目录

/

返回文章
返回