Experimental study on spalling of deep rock under half sine stress wave disturbance
-
摘要: 针对深部岩体在应力波扰动作用下所呈现出的层裂破坏现象,基于一维弹性波理论,首先阐明了一个简单的半正弦应力波在单个岩石杆件中的传播机理,并剖析其层裂破坏原理;依据净拉应力与动拉伸强度等特征因子,刻画并表征了其破坏过程。进而,采用SHPB设备开展了岩石杆件的层裂试验,发现层裂后岩石杆件其破坏断口较为齐整,并且与拉伸应力方向基本保持为垂直,属于典型的I型拉伸破坏。并且,层裂长度与理论分析值表征出一致的规律,亦即随着层裂次数增加,岩石杆件断裂的长度将逐渐增大。进一步地分析并揭示了岩石介质发生层裂的根本原因,是由于岩石处于强扰动所致的动力效应与岩石样品自身不均匀性、非线弹性及各向异性所体现出的结构效应而共同作用、相互耦合所引起的。文中所揭示的某些岩石工程破坏行为背后的固有本质,可对岩土工程的精细化开挖与支护设计、岩爆预警与监测等提供相应的理论支撑,其对于深部地下工程的强动力扰动行为与渐进失稳破坏现象,亦有一定的理论指导意义与工程应用前景。Abstract: For the spalling failure phenomenon of deep rock under the action of stress wave disturbance, based on the one-dimensional elastic wave theory, the propagation mechanism of a simple half sine stress wave in a single rock member is clarified, and the spalling failure principle is analyzed theoretically. According to the characteristic factors such as pure tensile stress and dynamic tensile strength, the failure process is characterized. In advance, the SHPB equipment is used to carry out the spalling tests on the rock. It is found that the failure fracture surface of the rock bar after spalling is relatively neat, and it is basically vertical to the tensile stress direction, which means that it is the typical type I tensile failure. Moreover, the spalling length is consistent with the theoretical analysis value. With the increase of spalling times, the fracture length of rock member will gradually increase. Furthermore, the essential reason of rock spalling is analyzed, showing that it is caused by the interaction and coupling of two main factors, i.e., the dynamic effects caused by strong disturbance and the structural effects reflected by the inhomogeneity, non-linear elasticity and anisotropy of rock specimens. The inherent nature of failure behaviors of a rock case revealed in this study can provide corresponding theoretical support for the refined excavation and support design of geotechnical engineering, rock burst warning and monitoring, etc. It also can provide certain theoretical significance and engineering application prospect for the strong dynamic disturbance behaviors and progressive instability failure phenomena of deep underground engineering.
-
Keywords:
- deep rock /
- spalling /
- half sine stress wave disturbance /
- dynamic effect /
- structural effect
-
-
表 1 试验参数及结果汇总表
Table 1 Summary of test parameters and results
编号 #1 #2 #3 尺寸/mm Φ50×L521 Φ50×L540 Φ50×L549 气压/MPa 0.2 0.25 0.3 层裂节数/节 6 6 6 层裂强度/MPa 39.72 41.11 49.82 -
[1] 钱七虎. 深部地下空间开发中的关键科学问题[M]// 钱七虎院士论文选集. 北京: 科学出版社, 2007. QIAN Qi-hu. Key scientific issues in the development of deep underground space[M]// Qian Qihu Selected Papers of Academician. Beijing: Science Press, 2007. (in Chinese)
[2] 谢和平. "深部岩体力学与开采理论"研究构想与预期成果展望[J]. 工程科学与技术, 2017, 49(2): 1–16. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702001.htm XIE He-ping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 2017, 49(2): 1–16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702001.htm
[3] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161–2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm
[4] 王礼立. 一维应变弹塑性压缩波传播中反向塑性变形引起的拉应力区[J]. 爆炸与冲击, 1982, 2(2): 39–44. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ198202004.htm WANG Li-li. Tensile stress regions caused by reverse plastic deformation in one dimensional strain elastic-plastic compressive wave propagation[J]. Explosion and Shock Waves, 1982, 2(2): 39–44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ198202004.htm
[5] 李夕兵, 宫凤强, ZHAO J. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 251–260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002007.htm LI Xi-bing, GONG Feng-qiang, ZHAO J. Test study of impact failure of rock subjected to one dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002007.htm
[6] 赵坚, 陈寿根, 蔡军刚. 用UDEC模拟爆炸波在节理岩体中的传播[J]. 中国矿业大学学报, 2002, 31(2): 111–115. doi: 10.3321/j.issn:1000-1964.2002.02.001 ZHAO Jian, CHEN Shou-gen, CAI Jun-gang. Simulation of blast wave propagation in joint rock mass using UDEC[J]. Journal of China University of Mining & Technology, 2002, 31(2): 111–115. (in Chinese) doi: 10.3321/j.issn:1000-1964.2002.02.001
[7] WANG L L. Unloading waves and unloading failures in structures under impact loading[J]. International Journal of Impact Engineering, 2004, 30(8/9): 889–900.
[8] 李夕兵, 古德生. 岩石在不同加载波条件下能量耗散的理论探讨[J]. 爆炸与冲击, 1994, 14(2): 129–139. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ402.004.htm LI Xi-bing, GU De-sheng. Theoretical discussion on energy dissipation of rock under different loading wave conditions[J]. Explosion and Shock, 1994, 14(2): 129–139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ402.004.htm
[9] 郭文章, 王树仁, 刘殿书. 岩石爆破层裂机理的研究[J]. 工程爆破, 1997, 3(3): 1–4. https://www.cnki.com.cn/Article/CJFDTOTAL-GCBP703.000.htm GUO Wen-zhang, WANG Shu-ren, LIU Dian-shu. Research on mechanism of rock blasting spalling[J]. Engineering Blasting, 1997, 3(3): 1–4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCBP703.000.htm
[10] 胡时胜, 张磊, 武海军. 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21(4): 128–132. doi: 10.3969/j.issn.1000-4750.2004.04.023 HU Shi-sheng, ZHANG Lei, WU Hai-jun. Experimental study on spalling streng th of concrete[J]. Engineering Mechanics, 2004, 21(4): 128–132. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.04.023
[11] 鲁义强, 张盛, 高明忠. 多次应力波作用下P-CCNBD岩样动态断裂的能量耗散特性研究[J]. 岩石力学与工程学报, 2018, 37(5): 1106–1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805005.htm LU Yi-qiang, ZHANG Sheng, GAO Ming-zhong. Dynamic response mechanisms of layered cemented backfill pillars under horizontal stress wave disturbance of far-field blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1106–1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805005.htm
[12] YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code[J]. Granular Matter, 22019, 21(4): 1–17.
[13] 高文学, 杨军, 黄风雷. 强冲击载荷下岩石本构关系研究[J]. 北京理工大学学报, 2000, 20(2): 165–170. doi: 10.3969/j.issn.1001-0645.2000.02.007 GAO Wen-xue, YANG Jun, HUANG Feng-lei. The constitutive relation of rock under strong impact loading[J]. Journal of Beijing Institute of Technology, 2000, 20(2): 165–170. (in Chinese) doi: 10.3969/j.issn.1001-0645.2000.02.007
[14] 徐颖, ZHANG Junchen, 姚伟. 花岗岩动态断裂能各向异性试验研究[J]. 岩石力学与工程学报, 2018, 37(增刊1): 3231–3238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1013.htm XU Ying, ZHANG Jun-chen, YAO Wei. Experimental study of dynamic fracture energy anisotropy of granitic rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3231–3238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1013.htm
[15] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005. WANG Li-li. Foundation of Stress Waves[M]. 2nd ed. Beijing: National Defense Industry Press, 2005. (in Chinese)
[16] 单仁亮, 黄宝龙, 程先锋. 应力波随机入射情况下均质岩石杆件断裂规律的理论分析[J]. 岩石力学与工程学报, 2009, 28(4): 666–672. doi: 10.3321/j.issn:1000-6915.2009.04.002 SHAN Ren-liang, HUANG Bao-long, CHENG Xian-feng. Theoretical analyses of fracture regulation of homogeneous rock bar in case of random incidence of stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 666–672. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.04.002
[17] 黄志平, 唐春安, 朱万成. 动载荷条件下波长对岩石试件破坏模式影响的数值模拟[J]. 岩土工程学报, 2007, 29(7): 1048–1053. doi: 10.3321/j.issn:1000-4548.2007.07.014 HUANG Zhi-ping, TANG Chun-an, ZHU Wan-cheng. Numerical simulation on failure modes of rock bars under different wave lengths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1048–1053. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.014
[18] ZHU W C, TANG C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 236–252. doi: 10.1016/j.ijrmms.2005.06.008
[19] 陈静曦. 应力波对岩石断裂的相关因素分析[J]. 岩石力学与工程学报, 1997, 16(2): 148–154. doi: 10.3321/j.issn:1000-6915.1997.02.008 CHEN Jing-xi. Analysis of correlation factors between stress wave and rock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(2): 148–154. (in Chinese) doi: 10.3321/j.issn:1000-6915.1997.02.008
[20] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报, 2003, 22(2): 177–181. doi: 10.3321/j.issn:1000-6915.2003.02.002 QI Cheng-zhi, QIAN Qi-hu. Physical mechanism of dependence of material strength on stain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177–181. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.02.002
[21] ZHU W C, TANG C A, HUANG Z P, et al. A numerical study of the effect of loading conditions on the dynamic failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 40(S1): 424–430.
[22] 朱万成, 逄铭璋, 黄志平. 岩石动态剥落破裂的数值模拟[J]. 东北大学学报(自然科学版), 2006, 27(5): 552–555. doi: 10.3321/j.issn:1005-3026.2006.05.021 ZHU Wan-cheng, PANG Ming-zhang, HUANG Zhi-ping. Numerical simulation on dynamic rock spalling[J]. Journal of Northeastern University(Natural Science), 2006, 27(5): 552–555. (in Chinese) doi: 10.3321/j.issn:1005-3026.2006.05.021
[23] TANG C A, LIU H, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part Ⅰ : effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555–569. doi: 10.1016/S1365-1609(99)00121-5
[24] 陶明. 高应力岩体的动态加卸荷扰动特征与动力学机制研究[D]. 长沙: 中南大学, 2013. TAO Ming. Dynamic and Unloading Disturbance Characteristics and Dynamic Mechanism of High-Stress Rock Mass[D]. Changsha: Central South University, 2013. (in Chinese)
[25] XI T, FAN W, CHU G B. Spall behavior of copper under ultra high strain rate loading[J]. Acta Physica Sinica, 2017, 66(4): 1–8.
[26] YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code[J]. Granular Matter, 2019, 21(4): 1–17.
[27] ZHANG C W, GHOLIPOURG, MOUSAVI A A. Nonlinear dynamic behavior of simply supported RC beams subjected to combined impact-blast loading[J]. Engineering Structures, 2019, 181: 124–142. doi: 10.1016/j.engstruct.2018.12.014