Numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling
-
摘要: 以多孔介质流体渗流和围岩应力耦合理论为基础,提出一种基于有限容积法(FVM)的水力耦合作用下射孔围岩水力压裂破裂数值模拟方法。首先,考虑初始地应力和流体渗流对射孔围岩的影响,运用坐标转换和叠加原理得到围岩应力分布。其次,考虑围岩渗透率和孔隙度的应力敏感性,通过渗流力学分析确定射孔围岩的流体压力。最后,探讨水力压裂射孔围岩破裂准则的基础上,构建考虑水力耦合的射孔围岩水力压裂力学模型,并基于有限容积法对渗流方程和应力方程予以离散,提出水力耦合作用下射孔围岩水力压裂破裂数值模拟方法。该方法实现了流体渗流与围岩应力的耦合,可精确求解水力耦合作用下射孔围岩水力压裂破裂压力和破裂时间,亦能对流体压力和围岩渗透率演化予以准确描述。相关成果丰富了水力压裂破裂机理的研究,亦可对实际工程设计提供重要的参考。Abstract: A numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling is proposed using the FVM based on the coupling theory of fluid flow of porous media and stress of surrounding rock. Firstly, considering the influences of the initial geo-stress and fluid flow in the perforated surrounding rock, the stress distribution of the surrounding rock is obtained through the coordinate conversion and superposition principle. Secondly, considering the stress sensitivity of permeability and porosity of surrounding rock, the fluid pressure field of perforated surrounding rock is determined through the fluid flow analysis. Finally, on the basis of discussing the fracture criteria for the perforated surrounding rock during hydraulic fracturing, a mechanical model for hydraulic fracture perforated surrounding rock considering hydraulic coupling is established. The flow equation and the stress equation are discretized by the finite volume method, and a numerical simulation method for hydraulic fracture under hydraulic coupling is proposed. The method realizes the coupling of fluid flow and stress of surrounding rock, which can accurately calculate the breakdown pressure and time of hydraulic fracture of perforated surrounding rock under hydraulic coupling, and can also accurately describe the fluid pressure field and permeability evolution of surrounding rock. The results illustrate that the stress sensitivity of permeability and porosity induces the more uniform distribution of fluid pressure, the permeability and fluid pressure near the well area increase, the seepage influence range expands, and the fracture pressure and time of surrounding rock decrease. The relevant results enrich the researches on breakdown mechanism of hydraulic fracture and also provide important reference for practical engineering.
-
-
表 1 渗流分析的边界条件
Table 1 Boundary conditions of fluid flow analysis
外边界 自由边界 内边界 射孔壁和井壁压力 表 2 FVM模拟计算模型参数
Table 2 Model parameters of numerical simulation in FVM
井筒外径/mm 井筒内径/mm 射孔直径/mm 射孔长度
/mm模型尺寸/(mm×mm) 网格尺寸/(mm×mm) 6 4 1 4 50×50 0.5×0.5 最大水平主应
力/MPa最小水平主应力/MPa 垂向主应力
/MPa围岩泊松比 井筒弹性模量
/GPa井筒泊松比 8.53 6.57 9.85 0.25 200 0.15 弹性模量/MPa 抗拉强度/MPa 初始孔隙度 应力敏感性模数M 初始渗透率
/10-17m2368.79 0.715 0.124 0.3 27.194 -
[1] LI M, GUO P J, STOLLE D, et al. Development of hydraulic fracture zone in heterogeneous material based on smeared crack method[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 761–774. doi: 10.1016/j.jngse.2016.09.018
[2] WANG Z C, BI L P, KWON S, et al. The effects of hydro-mechanical coupling in fractured rock mass on groundwater inflow into underground openings[J]. Tunnelling and Underground Space Technology, 2020, 103: 103489. doi: 10.1016/j.tust.2020.103489
[3] 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125–136. doi: 10.3969/j.issn.1001-8719.2016.01.017 QING Yong, SHENG Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125–136. (in Chinese) doi: 10.3969/j.issn.1001-8719.2016.01.017
[4] FU P, JOHNSON S M, CARRIGAN C R. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(14): 2278–2300. doi: 10.1002/nag.2135
[5] 张建光, 李湘萍, 王传睿, 等. 页岩气藏水力压裂中应力–流压耦合效应及人工裂缝扩展规律[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 96–105. doi: 10.3969/j.issn.1673-5005.2018.06.011 ZHANG Jian-guang, LI Xiang-ping, WANG Chuan-rui, et al. Numerical simulation of rock formation stress-fluid pressure coupling and development of artificial fractures during hydraulic fracturing of shale gas reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 96–105. (in Chinese) doi: 10.3969/j.issn.1673-5005.2018.06.011
[6] 陈勉, 陈治喜, 黄荣樽. 大斜度井水压裂缝破裂研究[J]. 石油大学学报(自然科学版), 1995, 19(2): 30–35. CHEN Mian, CHEN Zhi-xi, HUANG Rong-zun. Hydraulic fracturing of highly deviated wells[J]. Journal of University of Petroleum (Natural Science), 1995, 19(2): 30–35. (in Chinese)
[7] 朱海燕, 邓金根, 刘书杰, 等. 定向射孔水力压裂破裂压力的预测模型[J]. 石油学报, 2013, 34(3): 556–562. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303023.htm ZHU Hai-yan, DENG Jin-gen, LIU Shu-jie, et al. A prediction model of the hydraulic fracture initiation pressure in oriented perforation[J]. Acta Petrolei Sinica, 2013, 34(3): 556–562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303023.htm
[8] KING H M, DAVID G W. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210(1): 153–168. doi: 10.2118/686-G
[9] HAIMSON B, FAIRHURST C. Initiation and extension of hydraulic fractures in rocks[J]. Society of Petroleum Engineers Journal, 1967, 7(3): 310–318. doi: 10.2118/1710-PA
[10] 任岚, 赵金洲, 胡永全, 等. 水力压裂时岩石破裂压力数值计算[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3427–3422. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2022.htm REN Lan, ZHAO Jin-zhou, HU Yong-quan, et al. Numerical calculation of rock breakdown pressure during hydraulic fracturing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3417–3422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2022.htm
[11] 王六鹏, 李琪, 张绍云, 等. 基于约束优化方法的水力压裂破裂压力计算模型[J]. 西安石油大学学报(自然科学版), 2014, 29(1): 49–51. doi: 10.3969/j.issn.1673-064X.2014.01.009 WANG Liu-peng, LI Qi, ZHANG Shao-yun, et al. Calculation model for hydraulic fracture initiation pressure based on constraint optimization method[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(1): 49–51. (in Chinese) doi: 10.3969/j.issn.1673-064X.2014.01.009
[12] 郭天魁, 张士诚, 刘卫来, 等. 页岩储层射孔水平井分段压裂的破裂压力[J]. 天然气工业, 2013, 33(12): 1–6. GUO Tian-kui, ZHANG Shi-cheng, LIU Wei-lai, et al. Initiation pressure of multi-stage fracking for perforated horizontal wells of shale gas reservoirs[J]. Natural Gas Industry, 2013, 33(12): 1–6. (in Chinese)
[13] 李传亮, 孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014 LI Chuan-liang, KONG Xiang-yan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling and Production Technology, 2000, 22(2): 54–56. (in Chinese) doi: 10.3969/j.issn.1000-7393.2000.02.014
[14] 李传亮. 射孔完井条件下的岩石破裂压力计算公式[J]. 石油钻采工艺, 2002, 24(2): 37–38. doi: 10.3969/j.issn.1000-7393.2002.02.024 LI Chuan-liang. Rock breakdown pressure calculation equations for perforated wells[J]. Oil Drilling & Production Technology, 2002, 24(2): 37–38. (in Chinese) doi: 10.3969/j.issn.1000-7393.2002.02.024
[15] 杨兆中, 刘云锐, 张平, 等. 煤层气直井地层破裂压力计算模型[J]. 石油学报, 2018, 39(5): 578–586. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805009.htm YANG Zhao-zhong, LIU Yun-rui, ZHANG Ping, et al. A model for calculating formation breakdown pressure in CBM vertical wells[J]. Acta Petrolei Sinica, 2018, 39(5): 578–586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805009.htm
[16] LLANOS E M, JEFFREY R G, HILLIS R, et al. Hydraulic fracture propagation through an orthogonal discontinuity: a laboratory, analytical and numerical study[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2101–2118. doi: 10.1007/s00603-017-1213-3
[17] ZENG Q D, LIU W Z, YAO J. Hydro-mechanical modeling of hydraulic fracture propagation based on embedded discrete fracture model and extended finite element method[J]. Journal of Petroleum Science and Engineering, 2018, 167: 64–77. doi: 10.1016/j.petrol.2018.03.086
[18] 黄远智, 王恩志. 低渗透岩石渗透率与有效围压关系的实验研究[J]. 清华大学学报(自然科学版), 2007, 27(3): 340–343. doi: 10.3321/j.issn:1000-0054.2007.03.010 HUANG Yuan-zhi, WANG En-zhi. Experimental study of the laws between the effective confirming pressure and rock permeability[J]. Journal of Tsinghua University (Science and Technology), 2007, 27(3): 340–343. (in Chinese) doi: 10.3321/j.issn:1000-0054.2007.03.010
[19] 卢家亭, 李闽. 低渗砂岩渗透率应力敏感性实验研究[J]. 天然气地球科学, 2007, 19(3): 339–341. doi: 10.3969/j.issn.1672-1926.2007.03.004 LU Jia-ting, LI Min. Experimental research on permeability sensitivity of low-permeability sand rock[J]. Natural Gas Geoscience, 2007, 19 (3): 339–341. (in Chinese) doi: 10.3969/j.issn.1672-1926.2007.03.004
[20] 薛永超, 程林松. 不同级别渗透率岩心应力敏感实验对比研究[J]. 石油钻采工艺, 2011, 33(3): 38–41. doi: 10.3969/j.issn.1000-7393.2011.03.011 XUE Yong-chao, CHENG Lin-song. Experimental comparison study on stress sensitivity of different permeability cores[J]. Oil Drilling & Production Technology, 2011, 33(3): 38–41. (in Chinese) doi: 10.3969/j.issn.1000-7393.2011.03.011
[21] 荣传新, 程桦. 地下水渗流对巷道围岩稳定性影响的理论解[J]. 岩石力学与工程学报, 2004, 23(5): 741–744. doi: 10.3321/j.issn:1000-6915.2004.05.007 RONG Chuan-xin, CHENG Hua. Stability analysis of rocks around tunnel with ground water permeation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 741–744. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.05.007
[22] 李敬元, 李子丰. 渗流作用下井筒周围岩石内弹塑性应力分布规律及井壁稳定条件[J]. 工程力学, 1997, 14(1): 131–137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199701018.htm LI Jing-yuan, LI Zi-feng. Rock elastic-plastic stresses around a wellbore and wellbore stability under permeation osmosis[J]. Engineering Mechanics, 1997, 14(1): 131–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199701018.htm
[23] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999. KONG Xiang-yan. Advanced Mechanics of Fluids in Porous Media[M]. Hefei: University of Science and Technology of China Press, 1999. (in Chinese)
[24] TUPIN S, OHTA M. Assessing porous media permeability in non-darcy flow: a re-evaluation based on the forchheimer equation[J]. Materials, 2020, 13(11): 2535. doi: 10.3390/ma13112535
[25] 许凯, 雷学文, 孟庆山, 等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报, 2012, 31(1): 164–170. doi: 10.3969/j.issn.1000-6915.2012.01.019 XU Kai, LIE Xue-wen, MENG Qing-shan, et al. Study of inertial coefficient of non-Darcy seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 164–170. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.01.019
[26] WU Z W, CUI C Z, TRIVEDI J, et al. Pressure analysis for volume fracturing vertical well considering low-velocity non-darcy flow and stress sensitivity[J]. Geofluids, 2019, 2046061.
[27] YANG D S, WANG W, LI K, et al. Experimental investigation on the stress sensitivity of permeability in naturally fractured shale[J]. Environmental Earth Sciences, 2019, 78(2): 1–10.
[28] 马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135–140. doi: 10.3321/j.issn:0253-9985.2008.01.021 MA Zhong-gao, Experimental investigation into Biot's coefficient and rock elastic moduli[J]. Oil & Gasgeology, 2008, 29(1): 135–140. (in Chinese) doi: 10.3321/j.issn:0253-9985.2008.01.021
[29] NUR A. Critical porosity and the seismic velocity in rocks[J]. Eos Transactions American Geophysical Union, 1992, 73(1): 43–46.
[30] LI B, WONG RCK, SINA H. A modified Kozeny-Carman model for estimating anisotropic permeability of soft mud rocks[J]. Marine and Petroleum Geology, 2018, 98: 356–368. doi: 10.1016/j.marpetgeo.2018.08.034
[31] HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science & Engineering, 2000, 27: 129–149.
[32] 赵金洲, 任岚, 胡永全, 等. 裂缝性地层射孔井破裂压力计算模型[J]. 石油学报, 2012, 33(5): 841–845. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205015.htm ZHAO Jin-zhou, REN Lan, HU Yong-quan, et al. A calculation model of breakdown pressure for perforated wells in fractured formations[J]. Acta Petrolei Sinica, 2012, 33(5): 841–845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201205015.htm
[33] 谭维炎. 计算浅水动力学: 有限体积法的应用[M]. 北京: 清华大学出版社, 1998. TAN Wei-yan. Computational Shallow Water Hydrodynamics: Application of the Finite Volume Method[M]. Beijing: Tsinghua University Press, 1998. (in Chinese)