• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高压实膨润土孔隙结构特征研究进展

李昆鹏, 陈永贵, 叶为民, 崔玉军

李昆鹏, 陈永贵, 叶为民, 崔玉军. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
引用本文: 李昆鹏, 陈永贵, 叶为民, 崔玉军. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
Citation: LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001

高压实膨润土孔隙结构特征研究进展  English Version

基金项目: 

国家自然科学基金项目 42125701

国家自然科学基金项目 41977232

国家自然科学基金项目 41772279

国家自然科学基金项目 42030714

中央高校基本科研业务费项目 

详细信息
    作者简介:

    李昆鹏(1995—),男,陕西西安人,博士研究生,主要从事环境工程地质及非饱和土力学方面研究。E-mail: kunpeng_lee@tongji.edu.cn

    通讯作者:

    陈永贵, E-mail: cyg@tongji.edu.cn

  • 中图分类号: TU413

Advances in studies on pore structure of highly compacted bentonite

  • 摘要: 在详细阐述高压实膨润土孔隙结构组成及其界限孔径确定方法的基础上,全面总结了处置库近场条件下孔隙结构演化规律及其对水力特性影响的研究成果。结果表明:高压实膨润土具有由晶层间孔隙、层叠体间孔隙、集合体间孔隙组成的三孔结构,而描述本构关系时通常简化为由宏观孔隙和微观孔隙构成的双孔结构。双孔结构中宏、微观孔隙界限孔径的确定方法尚未取得共识。孔隙结构演化规律受深地质处置库近场环境影响,包括温度场、渗流场、应力场、化学场,目前对多场耦合作用的研究还不够深入。孔隙比及孔径分布特征无法准确反映膨润土的孔隙结构,尤其体现在孔隙形态及其空间分布规律,应用于讨论孔隙结构对水力特性的影响时存在局限性。基于此,选取适用于描述高压实膨润土本构关系的界限孔径确定方法、揭示热-水-力-化多场耦合作用下孔隙结构演化规律、构建科学合理的孔隙结构量化指标体系并建立相应的水力特性预测模型,是今后需要深入研究的方向。
    Abstract: Based on the detailed description of pore structure of highly compacted bentonite and approaches used to determine delimiting diameter, the evolution of pore structure under the near-field environment in repository and its influence on hydraulic behavior of the bentonite are summaried. The results show that the pore structure is made up of three classes of pores, including inter-layer, inter-particle and inter-aggregate pores. When describing the constitutive model for bentonite, the pore structure is always simplified as dual pore structure consisting of macro-and micro-pores. The approaches used to determine the delimiting diameter have not reached a consensus. The evolution of pore structure is affected by the near-field conditions of deep geological repository, including temperature, seepage, stress and chemical fields. However, less studies have considered the influences of multi-field coupling on the evolution. The pore ratio and pore-size distribution cannot accurately reflect the actual pore structure, especially the pore shape and spatial distribution. Hence, there are some limitations when the pore ratio and pore-size distribution are used to explore the relationship between the pore structure and the hydraulic behavior of the bentonite. Based on the above, the following aspects should be deeply studied in the future: the optimal approach used to determine the delimiting diameter for describing the constitutive model, the evolution law of pore structure under the coupled T-H-M-C conditions, the scientific and reasonable index system reflecting the actual pore structure, and the prediction model for hydraulic characteristics based on the above index system.
  • 图  1   深地质处置库近场环境

    Figure  1.   Typical near-field environment in HLW repository

    图  2   高压实膨润土微观结构组成[18]

    Figure  2.   Microstructure of highly compacted bentonite[18]

    图  3   双孔结构划分示意图

    Figure  3.   Schematic diagram of dividing dual-pore structure

    图  4   不同温度下高压实膨润土的孔径分布曲线[22]

    Figure  4.   Pore-size distribution curves of highly compacted bentonite under various temperatures[22]

    图  5   湿化过程中孔隙结构演化示意图[28]

    Figure  5.   Evolution of pore structure during wetting process[28]

    图  6   不同吸力下高压实膨润土的ESEM图像[27]

    Figure  6.   ESEM photos of highly compacted bentonite at various suctions[27]

    图  7   干燥及湿化饱和初期高压实膨润土的微观结构示意图[15]

    Figure  7.   Micro-structures of highly compacted bentonite in dry state and metting-saturated state[15]

    图  8   湿化—干燥过程中集合体间孔隙的演化特征[14]

    Figure  8.   Evolution of inter-aggregate pore during wetting-drying path[14]

    图  9   盐溶液对高压实膨润土孔径分布特征的影响[33]

    Figure  9.   Effects of salt solution on pore-size distribution of high-pressure bentonite[33]

    图  10   碱溶液对高压实膨润土孔径分布特征的影响[37]

    Figure  10.   Effects of alkali solution on pore-size distribution of high-pressure bentonite[37]

    图  11   不同孔隙比高压实膨润土的持水曲线[17]

    Figure  11.   Water retention curves of highly compacted bentonite with different void ratios[17]

    图  12   高压实膨润土饱和渗透系数随孔隙比的变化[17, 42-46]

    Figure  12.   Evolution of saturated permeability of highly compacted bentonite with void ratio[17, 42-46]

    图  13   高压实膨润土饱和渗透系数随eMem的变化[47]

    Figure  13.   Evolution of saturated permeabilityof highly compacted bentonite with eM and em [47]

    图  14   试样A与试样B的孔径分布曲线[47]

    Figure  14.   Pore-size distribution curves of samples A and B[47]

    图  15   不同尺度高压实膨润土孔隙结构模型[48]

    Figure  15.   Model for pore structure of highly compacted bentonite with different scales[48]

    图  16   高压实膨润土最大膨胀力随孔隙比的变化[17, 49-52]

    Figure  16.   Evolution of maximum swelling pressure of highly.compacted bentonite with void ratio[17, 49-52]

    表  1   界限孔径确定方法

    Table  1   Approaches used to determine delimiting diameter

    方法名称 理论基础/假设 文献
    PSD法 机械压实只会压缩集合体间孔隙,而对集合体内孔隙几乎无影响 Lloret等[17]
    注汞/退汞法 集合体内孔隙在注汞/退汞过程中仅发生弹性、可逆的变形,集合体间孔隙在退汞时滞留汞液 Delage等[16]
    WRC法 机械压实不会影响集合体内孔隙水的赋存特征 Romero等[2]
    峰值法 将饱和样孔径分布曲线峰值孔径作为界限孔径 Romero等[20]
    谷值法 将压实样孔径分布曲线谷值孔径作为界限孔径 Yuan等[21]
    下载: 导出CSV

    表  2   高压实膨润土最大膨胀力与孔隙比的拟合方程

    Table  2   Fitting relationships between maximums welling pressure of highly compacted bentonite and void ratio

    膨润土类型 拟合方程 R2
    GMZ lgPsf=1.9952.395e 0.949
    MX80 lgPsf=2.2052.146e 0.812
    Kunigel V1 lgPsf=0.9691.461e 0.926
    FEBEX lgPsf=2.5622.585e 0.905
    FoCa lgPsf=3.2664.396e 0.985
    下载: 导出CSV
  • [1] 崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842–847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842–847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019

    [2]

    ROMERO E, GENS A, LLORET A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999, 54(1/2): 117–127.

    [3]

    DELAGE P. Microstructure features in the behaviour of engineered barriers for nuclear waste disposal[C]// Experimental Unsaturated Soil Mechanics, 2007, Berlin.

    [4] 叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255–2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm

    YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255–2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm

    [5]

    LAMBE T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 84(SM2): 1–34.

    [6]

    AYLMORE L A G, QUIRK J P. Domain or turbostratic structure of clays[J]. Nature, 1960, 187(4742): 1046–1048. doi: 10.1038/1871046a0

    [7]

    OLSEN H W. Hydraulic flow through saturated clays[J]. Clays and Clay Minerals, 1960, 9(1): 131–161. doi: 10.1346/CCMN.1960.0090108

    [8]

    DIAMOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7–23. doi: 10.1346/CCMN.1970.0180103

    [9]

    AHMED S, LOVELL C W, DIAMOND S. Pore sizes and strength of compacted clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(4): 407–425. doi: 10.1061/AJGEB6.0000035

    [10]

    PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153–157. doi: 10.13182/NT79-A32305

    [11]

    PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19: 381–387. doi: 10.1139/t82-041

    [12]

    YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1): 83–91.

    [13]

    ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705–727. doi: 10.1007/s10706-008-9204-5

    [14]

    SUN H, MAŠÍN D, NAJSER J, et al. Bentonite microstructure and saturation evolution in wetting-drying cycles evaluated using ESEM, MIP and WRC measurements[J]. Géotechnique. 2019, 69(8): 713–726. doi: 10.1680/jgeot.17.P.253

    [15]

    TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science. 2010, 47(1/2): 65–71.

    [16]

    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003

    [17]

    LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8-14): 701–715. doi: 10.1016/j.pce.2006.03.002

    [18]

    AGUS S S. An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures[D]. Weimar, Germany: Bauhaus-University Weimar, 2005.

    [19]

    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1): 173–183.

    [20]

    ROMERO E, DELLA VECCHIA G, JOMMI C. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313–328. doi: 10.1680/geot.2011.61.4.313

    [21]

    YUAN S, LIU X, ROMERO E, et al. Discussion on the separation of macropores and micropores in a compacted expansive clay[J]. Géotechnique, 2020, 10(3): 454–460. doi: 10.1680/jgele.20.00056

    [22] 刘伟, 梁栋, 杨仲田, 等. 高温作用对膨润土孔隙结构的影响[J]. 化工新型材料, 2018, 46(增刊1): 43–46. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm

    LIU Wei, LIANG Dong, YANG Zhong-tian, et al. Influence of high temperature on the pore structure of bentonite[J]. New Chemical Materials, 2018, 46(S1): 43–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm

    [23] 徐颖, 邓利蓉, 芦玉峰, 等. 热处理对柯尔碱膨润土微观结构和物化性能的影响[J]. 岩矿测试, 2019, 38(3): 280–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm

    XU Ying, DENG Li-rong, LU Yu-feng, et al. Effect of thermal treatment on the composition and physicochemical properties of bentonite from the Kerjian Region, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 280–287. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm

    [24]

    COUTURE R A. Steam rapidly reduces the swelling capacity of bentonite[J]. Nature, 1985, 318(6041): 50–52. doi: 10.1038/318050a0

    [25]

    PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23(1/2/3/4): 239–244.

    [26]

    INOUE A, WATANABE T, KOHYAMA N, et al. Characterization of illitization of smectite in bentonite beds at kinnekulle, Sweden[J]. Clays and Clay Minerals, 1990, 38(3): 241–249. doi: 10.1346/CCMN.1990.0380302

    [27]

    CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[J]. Proceedings of the 3nd International Conference on Unsaturated Soils, 2002, 2: 593–598.

    [28]

    YE W M, WANG Y, WANG Q, et al. Stress-dependent temperature effect on the swelling behavior of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3897–3907. doi: 10.1007/s10064-020-01801-2

    [29]

    WANG Q, CUI Y, MINH TANG A, et al. Time- and density-dependent microstructure features of compacted bentonite[J]. Soils and Foundations, 2014, 54(4): 657–666. doi: 10.1016/j.sandf.2014.06.021

    [30]

    NOWAMOOZ H, MASROURI F. Influence of suction cycles on the soil fabric of compacted swelling soil[J]. Comptes Rendus Geoscience, 2010, 342(12): 901–910. doi: 10.1016/j.crte.2010.10.003

    [31]

    LLORET A, VILLAR M V, SÀNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27–40. doi: 10.1680/geot.2003.53.1.27

    [32]

    SUDDEEPONG A, CHAI J, SHEN S, et al. Deformation behaviour of clay under repeated one-dimensional unloading–reloading[J]. Canadian Geotechnical Journal, 2015, 52(8): 1035–1044. doi: 10.1139/cgj-2014-0216

    [33] 贺勇. 化-水-力耦合作用下高压实GMZ膨润土体变特征研究[D]. 上海: 同济大学, 2017.

    HE Yong. Volume Change Behavior of Highly Compacted GMZ Bentonite under Chemo-Hydro-Mechanical Conditions[D]. Shanghai: Tongji University, 2017. (In Chinese)

    [34]

    MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]// Proceedings 3rd International Conference on Unsaturated Soils, Recife, 2002, Brazil.

    [35]

    MOKNI N. Deformation and Flow Driven by Osmotic Processes in Porous Materials[D]. Barcelona: Polytechnic University of Catalonia, 2011.

    [36]

    LIU L, CHEN Y, YE W, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334–342. doi: 10.1016/j.clay.2018.04.023

    [37]

    BAO C, JIAXING G, HUIXIN Z. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237–247. doi: 10.1180/claymin.2016.051.2.10

    [38]

    SUN Z, CHEN Y, CUI Y, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66–74. doi: 10.1016/j.enggeo.2018.08.002

    [39] 刘樟荣, 叶为民, 崔玉军, 等. 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm

    LIU Zhang-rong, YE Wei-min, CUI Yu-jun, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Rock and Soil Mechanics, 2021, 42(6): 1549–1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm

    [40]

    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105–112. doi: 10.1680/geot.2003.53.1.105

    [41] 费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm

    FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm

    [42]

    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621–2630. doi: 10.1007/s12665-014-3169-x

    [43]

    WEN Z. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794–800.

    [44]

    MITACHI T. Mechanical behavior of bentonite-sand mixtures as buffer materials[J]. Soils and Foundations, 2008, 48(3): 363–374. doi: 10.3208/sandf.48.363

    [45]

    RAO S M, K. R. Hydro-mechanical characterization of Barmer 1 bentonite from Rajasthan, India[J]. Nuclear Engineering and Design, 2013, 265: 330–340. doi: 10.1016/j.nucengdes.2013.09.012

    [46]

    WANG Q, MINH TANG A, CUI Y, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232–245. doi: 10.1016/j.sandf.2013.02.004

    [47]

    YUAN S Y, LIU X F, BUZZI O. Effects of soil structure on the permeability of saturated Maryland clay[J]. Géotechnique, 2019, 69(1): 72–78. doi: 10.1680/jgeot.17.P.120

    [48] 宋帅兵. 高庙子膨润土孔隙结构多尺度特征及其渗流特性研究[D]. 徐州: 中国矿业大学, 2020.

    SONG Shuai-bing. Multi-scale Characteristics of Pore Structure and Seepage Characteristics of GMZ Bentonite[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)

    [49] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29–36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(1): 29–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    [50]

    KOMINE H, OGATA N. Predicting swelling characteristics of bentonites[J]. Journal of Geotechnical and Geo- environmental Engineering, 2004, 130(8): 818–829. doi: 10.1061/(ASCE)1090-0241(2004)130:8(818)

    [51]

    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437–450. doi: 10.1139/t03-096

    [52]

    SUN H Q. Prediction of swelling pressure of compacted bentonite with respect to void ratio based on diffuse double layer theory[C]// Proceedings of the 1st GeoMEast International Congress and Exhibition, 2017, Giza.

    [53]

    SOUZA R F C, PEJON O J. Pore size distribution and swelling behavior of compacted bentonite/claystone and bentonite/sand mixtures[J]. Engineering Geology, 2020, 275: 105738. doi: 10.1016/j.enggeo.2020.105738

  • 期刊类型引用(0)

    其他类型引用(1)

图(16)  /  表(2)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  70
  • PDF下载量:  417
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-05-10
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回