Improved Knothe surface dynamic subsidence prediction model and its parameter analysis
-
摘要: 针对传统Knothe时间模型描述地表动态沉降过程中的不足,在Knothe时间模型基础上考虑了上覆地层非线性力学特征,建立改进Knothe时间模型,理论分析表明改进后时间模型符合地表单点沉降、沉降速度和沉降加速度变化规律;结合现场实测数据和双介质法,给出改进Knothe时间模型参数计算表达式。采用兴隆庄煤矿4326工作面、三道沟煤矿35101工作面和阳泉二矿8403综采工作面开采地表沉降监测数据,对传统Knothe时间模型和改进Knothe时间模型精度进行对比分析。结果表明:改进时间模型能够更真实地反映地表随开采时间的动态变化过程,预测值和实测值的平均相对标准偏差仅为3.22%,远低于Knothe时间模型的15.72%,验证了改进时间模型的精确性和可靠性;地表动态沉降过程受煤层回采速度v、松散层厚度Hs、基岩层厚度Hj、松散层充分采动角φs和基岩充分采动角φj影响,且影响敏感度依次为:Hj,v,Hs,φj,φs。研究可为煤层开采地表动态沉陷预测提供一定的借鉴和参考。
-
关键词:
- 地表沉降 /
- Knothe时间模型 /
- 动态预测 /
- 沉降速度 /
- 敏感性
Abstract: In view of the shortcomings of the traditional Knothe time model in describing the process of surface dynamic subsidence, based on the Knothe time model, considering the nonlinear mechanical characteristics of the overlying strata, an improved Knothe time model is established. The theoretical analysis shows that the improved time model conforms to the variation laws of surface single point subsidence, subsidence velocity and subsidence acceleration. Based on the field measured data and the two-medium method, the expression for parameters of the improved Knothe time model is given. Based on the surface subsidence monitoring data of 4326 working face of Xinglongzhuang Coal Mine, 35101 working face of Sandaogou Coal Mine and 8403 fully mechanized working face of Yangquan No. 2 Coal Mine, the accuracies of the traditional Knothe time model and the improved Knothe time model are compared and analyzed. The results show that the improved time model can more truly reflect the dynamic change process of the surface with the mining time. The average relative standard deviation between the predicted and measured values is only 3.22%, which is far lower than 15.72% of the Knothe time model, which verifies the accuracy and reliability of the improved time model. The process of surface dynamic subsidence is affected by the mining speed v of coal seam, the thickness Hs of loose layer, the thickness Hj of bedrock layer and the full mining angle of loose layer φi and the full mining angle of bedrock φj, and the impact sensitivity is in the order of Hj, v, Hs, φj and φi. The results may provide some reference for the prediction of surface subsidence in coal seam mining.-
Keywords:
- surface subsidence /
- Knothe time model /
- dynamic prediction /
- subsidence velocity /
- susceptibility
-
-
表 1 改进模型沉降、沉降速度和沉降加速度变化
Table 1 Change of subsidence, subsidence velocity and subsidence acceleration of improved model
参数 时间 t1 (t1,t2) t2 (t2,t3) t3 W(t) 0 增大 增大 增大 W0 V(t) 0 加速 最大 减速 0 a(t) 0 > 0 0 < 0 0 表 2 3个矿区工作面开采参数
Table 2 Mining parameters of working faces in three mining areas
序号 工作面 平均采深/m 松散层厚度/m 基岩层厚度/m 最大沉降量/m 开采速度/(m·d-1) 煤层厚度/m 1 兴隆庄矿4326 517 198 319 5.475 3.80 8.6 2 三道沟煤矿35101 135 70 65 1.673 3.50 2.0 3 阳泉二矿8403 300 10 290 3.231 3.20 6.5 表 3 预测结果精度分析
Table 3 Accuracy analysis of predicted results
煤矿名称 改进Knothe时间模型 Knothe时间模型 标准差/m 相对标准偏差/% 标准差/m 相对标准偏差/% 兴隆庄煤矿 0.105 1.92 0.836 15.26 三道沟煤矿 0.065 3.88 0.323 19.32 阳泉二矿 0.126 3.86 0.708 12.57 平均值 0.098 3.22 0.622 15.72 表 4 主要因素对地表动态沉降影响的敏感性
Table 4 Sensitivity of main factors to influence of surface dynamic subsidence
影响
因素变化范围 与达到最大沉降的时间关系 影响幅度/% 与达到最大沉降速度的时间关系 影响幅度/% 与最大沉降速度关系 影响幅度/% v 2~6 m/d 负相关 65.96 负相关 68.00 正相关 194.44 Hs 200~600 m 正相关 29.27 正相关 27.27 负相关 20.00 Hj 200~600 m 正相关 173.17 正相关 177.27 负相关 65.00 φs 82~86° 负相关 15.69 负相关 14.81 正相关 15.15 φj 53~61° 负相关 22.64 负相关 21.43 负相关 25.00 -
[1] HU Q F, CUI X M, WANG G, et al. Key technology of predicting dynamic surface subsidence based on knothe time function[J]. Journal of Software, 2011, 6(7): 1273–1280.
[2] 高超, 徐乃忠, 孙万明, 等. 基于Bertalanffy时间函数的地表动态沉陷预测模型[J]. 煤炭学报, 2020, 45(8): 2740-2748. GAO Chao, XU Naizhong, SUN Wanming, et al. Dynamic surface subsidence prediction model based on Bertalanffy time function[J]. Journal of China Coal Society, 2020, 45(8): 2740-2748. (in Chinese)
[3] HEJMANOWSKI R, MALINOWSKA A. Evaluation of reliability of subsidence prediction based on spatial statistical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 432–438. doi: 10.1016/j.ijrmms.2008.07.012
[4] JAROSZ A, KARMIS M, SROKA A. Subsidence development with time—experiences from longwall operations in the Appalachian Coalfield[J]. International Journal of Mining and Geological Engineering, 1990, 8(3): 261-273. doi: 10.1007/BF01554045
[5] 孙闯, 徐乃忠, 刘义新, 等. 基于双因素时间函数的松散地层条件下地表点动态沉降预计[J]. 岩土力学, 2017, 38(3): 821-826, 865. SUN Chuang, XU Naizhong, LIU Yixin, et al. Prediction of dynamic subsidence of ground point under loose stratum based on two-factor time function[J]. Rock and Soil Mechanics, 2017, 38(3): 821-826, 865. (in Chinese)
[6] 王军保, 刘新荣, 刘小军. 开采沉陷动态预测模型[J]. 煤炭学报, 2015, 40(3): 516-521. WANG Junbao, LIU Xinrong, LIU Xiaojun. Dynamic prediction model for mining subsidence[J]. Journal of China Coal Society, 2015, 40(3): 516-521. (in Chinese)
[7] 唐君, 王金安, 王磊. 薄冲积层下开采地表动态移动规律与特征[J]. 岩土力学, 2014, 35(10): 2958-2968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm TANG Jun, WANG Jinan, WANG Lei. Dynamic laws and characteristics of surface movement induced by mining under thin alluvium[J]. Rock and Soil Mechanics, 2014, 35(10): 2958-2968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm
[8] 刘玉成, 庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. 岩土力学, 2009, 30(11): 3406-3410, 3416. doi: 10.3969/j.issn.1000-7598.2009.11.031 LIU Yucheng, ZHUANG Yanhua. Model for dynamic process of ground surface subsidence due to underground mining[J]. Rock and Soil Mechanics, 2009, 30(11): 3406-3410, 3416. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.031
[9] 张凯, 胡海峰, 廉旭刚, 等. 地表动态沉陷预测正态时间函数模型优化研究[J]. 煤炭科学技术, 2019, 47(9): 235-240. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm ZHANG Kai, HU Haifeng, LIAN Xugang, et al. Optimization of surface dynamic subsidence prediction normal time function model[J]. Coal Science and Technology, 2019, 47(9): 235-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm
[10] 李德海. 覆岩岩性对地表移动过程时间影响参数的影响[J]. 岩石力学与工程学报, 2004, 23(22): 3780-3784. LI Dehai. Influence of cover rock characteristics on time influencing parameters in process of surface movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3780-3784. (in Chinese)
[11] 常占强, 王金庄. 关于地表点下沉时间函数的研究: 改进的克诺特时间函数[J]. 岩石力学与工程学报, 2003, 22(9): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm CHANG Zhanqiang, WANG Jinzhuang. Study on time function of surface subsidence—the improved knothe time function[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(9): 1496-1499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm
[12] 张兵, 崔希民, 赵玉玲, 等. 优化分段Knothe时间函数求参方法[J]. 煤炭学报, 2018, 43(12): 3379-3386. ZHANG Bing, CUI Ximin, ZHAO Yuling, et al. Parameter calculation method for optimized segmented Knothe time function[J]. Journal of China Coal Society, 2018, 43(12): 3379-3386. (in Chinese)
[13] 朱广轶, 沈红霞, 王立国. 地表动态移动变形预测函数研究[J]. 岩石力学与工程学报, 2011, 30(9): 1889-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm ZHU Guangyi, SHEN Hongxia, WANG Liguo. Study of dynamic prediction function of surface movement and deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1889-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm
[14] CHENG H, ZHANG L L, GUO L H, et al. A new dynamic prediction model for underground mining subsidence based on inverse function of unstable creep[J]. Advances in Civil Engineering, 2021, 2021: 1-9.
[15] ZHU X J, GUO G L, ZHA J F, et al. Surface dynamic subsidence prediction model of solid backfill mining[J]. Environmental Earth Sciences, 2016, 75(12): 1007.
[16] ZHANG L L, CHENG H, YAO Z S, et al. Application of the improved knothe time function model in the prediction of ground mining subsidence: a case study from Heze city, Shandong Province, China[J]. Applied Sciences, 2020, 10(9): 3147.
[17] 崔希民, 缪协兴, 赵英利, 等. 论地表移动过程的时间函数[J]. 煤炭学报, 1999, 24(5): 453-456. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm CUI Ximin, MIAO Xiexing, ZHAO Yingli, et al. Discussion on the time function of time dependent surface movement[J]. Journal of China Coal Society, 1999, 24(5): 453-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm
[18] 王正帅, 邓喀中. 采动区地表动态沉降预测的Richards模型[J]. 岩土力学, 2011, 32(6): 1664-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm WANG Zhengshuai, DENG Kazhong. Richards model of surface dynamic subsidence prediction in mining area[J]. Rock and Soil Mechanics, 2011, 32(6): 1664-1668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm
[19] 张兵, 崔希民, 胡青峰. 开采沉陷动态预计的正态分布时间函数模型研究[J]. 煤炭科学技术, 2016, 44(4): 140-145, 174. ZHANG Bing, CUI Ximin, HU Qingfeng. Study on normal distributed time function model to dynamically predict mining subsidence[J]. Coal Science and Technology, 2016, 44(4): 140-145, 174. (in Chinese)
[20] 席国军, 洪兴, 邵红旗. 改进Logistic函数模型在地表下沉预计中的应用[J]. 煤炭科学技术, 2013, 41(8): 114-117, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm XI Guojun, HONG Xing, SHAO Hongqi. Application of improved logistic function model to prediction of surface subsidence[J]. Coal Science and Technology, 2013, 41(8): 114-117, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm
-
期刊类型引用(3)
1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术
其他类型引用(6)
-
其他相关附件