Elastic-viscoplastic constitutive model for overconsolidated unsaturated soils considering time effects and its verification
-
摘要: 时间效应对超固结非饱和土的力学和变形特性影响较大,建立考虑时间效应的超固结非饱和土弹黏塑性本构模型,对于准确分析超固结非饱和土时间相依变形特性具有重要意义。以超固结土统一硬化模型为基础框架,建立了一个同时考虑固结度、基质吸力、时间效应的超固结非饱和土弹黏塑性本构模型。首先,根据超固结土弹塑性变形特性,引入统一硬化参数对一维弹黏塑性本构模型进行修正,建立了连续加载条件下超固结土弹黏塑性本构模型;其次,采用非饱和土巴塞罗那模型屈服面,结合过应力理论,建立了考虑时间效应和基质吸力影响的弹黏塑性模型。与巴塞罗那模型相比,额外引入了与时间效应相关的黏滞系数。模型验证和试验数据对比结果表明,该模型能够合理地预测超固结非饱和土时间相依变形特性。Abstract: The time effects have a significant influence on the deformation characteristics of the overconsolidated unsaturated soils. Establishing an elastic-viscoplastic constitutive model for the overconsolidated unsaturated soils considering the time effects is of great significance for accurately analyzing the time-dependent deformation characteristics. Based on the unified hardening model for the overconsolidated soils, an elasto-viscoplastic constitutive model for the overconsolidated unsaturated soils is established, considering the degree of consolidation, matric suction and time effects. Firstly, according to the elasto-plastic deformation characteristics of the overconsolidated soils, the one-dimensional elasto-viscoplastic constitutive model for the overconsolidated soils under continuous loading condition is modified by introducing the unified hardening parameters. Secondly, by using the Barcelona model yield surface of the unsaturated soils and based on the over-stress theory, an elasto-viscoplastic model considering the time effects and the influences of suction is established. Compared with the Barcelona model, an additional viscosity coefficient related to the time effects is introduced. The comparative results of model verification and experimental data show that the proposed model can reasonably predict the time-dependent deformation characteristics of the overconsolidated unsaturated soils.
-
Keywords:
- overconsolidation /
- unsaturated soil /
- matrix suction /
- time effect /
- overstress theory /
- elasto-viscoplasticity
-
-
表 1 超固结非饱和粉土CRS试验分组
Table 1 CRS test groups of overconsolidated unsaturated silty soil
吸力s/kPa 净围压σ3/kPa 初始含水量w/% 初始孔隙比e0 超固结比OCR 100 50 13.6 0.68 11 100 100 10.5 0.74 5.5 200 50 10.8 0.70 11 200 100 10.0 0.70 5.5 300 50 10.1 0.70 11 300 100 10.6 0.71 5.5 表 2 香港海岸沉积黏土试验分组
Table 2 Test groups for Hong Kong coastal sedimentary clay
先期固结压力p0/kPa 净围压σ3/kPa 轴向应变速率/(%/min) 超固结比(OCR) 400 400 0.25 1 400 400 0.025 1 400 400 0.0025 1 200 100 0.025 2 400 100 0.025 4 800 100 0.025 8 表 3 非饱和高岭土CRS试验分组
Table 3 CRS test groups for unsaturated kaolin
试验编号 吸力s/kPa 净围压σ3/kPa 轴向应变速率/(%·min-1) CW_20_1 20 100 0.1 CW_20_2 20 100 1.0 CW_200_1 200 100 0.1 CW_400_1 400 100 0.1 -
[1] BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118. doi: 10.1680/geot.1967.17.2.83
[2] YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745. doi: 10.1139/t99-042
[3] BORJA R I, KAVAZANJIAN E. Discussion: a constitutive model for the stress-strain-time behaviour of 'wet clays'[J]. Géotechnique, 1987, 37(1): 119-125. doi: 10.1680/geot.1987.37.1.119
[4] KUTTER B L, SATHIALINGAM N. Elastic-viscoplastic modelling of the rate-dependent behaviour of clays[J]. Géotechnique, 1992, 42(3): 427-441. doi: 10.1680/geot.1992.42.3.427
[5] GRAHAM J, CROOKS J H A, BELL A L. Time effects on the stress-strain behaviour of natural soft clays[J]. Géotechnique, 1984, 34(3): 433-444. doi: 10.1680/geot.1984.34.3.433
[6] VAID Y P, CAMPANELLA R G. Time-dependent behavior of undisturbed clay[J]. Journal of the Geotechnical Engineering Division, 1977, 103(7): 693-709. doi: 10.1061/AJGEB6.0000449
[7] LEROUEIL S, KABBAJ M, TAVENAS F, et al. Discussion: Stress—strain—strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1986, 36(2): 283-290. doi: 10.1680/geot.1986.36.2.283
[8] NASH D F T, SILLS G C, DAVISON L R. One-dimensional consolidation testing of soft clay from Bothkennar[J]. Géotechnique, 1992, 42(2): 241-256. doi: 10.1680/geot.1992.42.2.241
[9] ADACHI T, OKA F. Constitutive equations for normally consolidated clay based on elasto-viscoplast[J]. Soils and Foundations, 1982, 22(4): 57-70. doi: 10.3208/sandf1972.22.4_57
[10] SEKIGUCHI H. Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity[J]. Soils and Foundations, 1984, 24(1): 129-147. doi: 10.3208/sandf1972.24.129
[11] YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic–viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677. doi: 10.1016/j.ijsolstr.2009.11.004
[12] 王智超, 金刚, 吴晓峰, 等. 非饱和压实土率相关变形特征与时效模型[J]. 岩土力学, 2016, 37(3): 719-727. doi: 10.16285/j.rsm.2016.03.014 WANG Zhichao, JIN Gang, WU Xiaofeng, et al. Rate-dependent deformation characteristics and time-dependent constitutive model of unsaturated compacted clay[J]. Rock and Soil Mechanics, 2016, 37(3): 719-727. (in Chinese) doi: 10.16285/j.rsm.2016.03.014
[13] 姚仰平, 孔令明, 胡晶. 考虑时间效应的UH模型[J]. 中国科学: 技术科学, 2013, 43(3): 298-314. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201303008.htm YAO Yangping, KONG Lingming, HU Jing. UH model considering time effect[J]. Scientia Sinica (Technologica), 2013, 43(3): 298-314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201303008.htm
[14] PERZYNA P. Fundamental problems in viscoplasticity[M]// Advances in Applied Mechanics. Amsterdam: Elsevier, 1966: 243-377.
[15] BODAS FREITAS T M, POTTS D M, ZDRAVKOVIC L. Implications of the definition of the Φ function in elastic- viscoplastic models[J]. Géotechnique, 2012, 62(7): 643-648. doi: 10.1680/geot.10.P.053
[16] DE GENNARO V, PEREIRA J M. A viscoplastic constitutive model for unsaturated geomaterials[J]. Computers and Geotechnics, 2013, 54: 143-151. doi: 10.1016/j.compgeo.2013.06.005
[17] 李冬, 刘艳. 非饱和土的黏弹塑性本构模型研究[J]. 北京工业大学学报, 2018, 44(3): 321-326. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803001.htm LI Dong, LIU Yan. Visco-elasto-plasitc constitutive model for unsaturated soils[J]. Journal of Beijing University of Technology, 2018, 44(3): 321-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803001.htm
[18] 胡亚元. 非饱和土等效时间流变模型[J]. 哈尔滨工业大学学报, 2019, 51(12): 153-159. doi: 10.11918/j.issn.0367-6234.201901150 HU Yayuan. An equivalent-time rheological model of unsaturated soil[J]. Journal of Harbin Institute of Technology, 2019, 51(12): 153-159. (in Chinese) doi: 10.11918/j.issn.0367-6234.201901150
[19] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
[20] ALONSO E E, GENS A, JOSA A. Discussion: a constitutive model for partially saturated soils[J]. Géotechnique, 1991, 41(2): 273-275. doi: 10.1680/geot.1991.41.2.273
[21] YIN J H, GRAHAM J. Viscous–elastic–plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209. doi: 10.1139/t89-029
[22] 姚仰平, 牛雷, 崔文杰, 等. 超固结非饱和土的本构关系[J]. 岩土工程学报, 2011, 33(6): 833-839. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14018.shtml YAO Yangping, NIU Lei, CUI Wenjie, et al. UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833-839. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14018.shtml
[23] YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
[24] 陈栋. 水力-力学耦合下非饱和土的UH模型[D]. 北京: 北京航空航天大学, 2020. CHEN Dong. An Advanced UH Model for Unsaturated Soils with Coupling the Hydro-mechanical Behaviour[D]. Beijing: Beihang University, 2020. (in Chinese)
[25] 方雨菲, 姚仰平, 舒文俊. 考虑时间效应的粒状材料的UH模型[J]. 岩土工程学报, 2019, 41(增刊2): 17-20. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17837.shtml FANG Yufei, YAO Yangping, SHU Wenjun. Time-dependent unified hardening model for granular materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 17-20. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17837.shtml
[26] ESTABRAGH A R, JAVADI A A. Critical state for overconsolidated unsaturated silty soil[J]. Canadian Geotechnical Journal, 2008, 45(3): 408-420. doi: 10.1139/T07-105
[27] ZHU J G, YIN J H. Strain-rate-dependent stress-strain behavior of overconsolidated Hong Kong marine clay[J]. Canadian Geotechnical Journal, 2000, 37(6): 1272-1282. doi: 10.1139/t00-054
[28] YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
[29] NYUNT T T, LEONG E C, RAHARDJOD H. Effects of matric suction and loading rate on the stiffness-strain behaviour of kaolin[C]// Experimental Studies in Unsaturated Soils and Expansive Soils. Francis, 2009: 15-19.
[30] WIJAYA M, LEONG E C, RAHARDJO H. CRS compression tests of an unsaturated Kaolin with pore-water pressure measurement[M]// Unsaturated Soils: Research & Applications. Sydney: CRC Press, 2014: 1639-1643.
-
其他相关附件