基于特征粒径理论的镶齿滚刀最优钻压分析

    谭昊

    谭昊. 基于特征粒径理论的镶齿滚刀最优钻压分析[J]. 岩土工程学报, 2023, 45(6): 1222-1230. DOI: 10.11779/CJGE20220271
    引用本文: 谭昊. 基于特征粒径理论的镶齿滚刀最优钻压分析[J]. 岩土工程学报, 2023, 45(6): 1222-1230. DOI: 10.11779/CJGE20220271
    TAN Hao. Optimal pressure of TCT roller cutter based on characteristic particle method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1222-1230. DOI: 10.11779/CJGE20220271
    Citation: TAN Hao. Optimal pressure of TCT roller cutter based on characteristic particle method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1222-1230. DOI: 10.11779/CJGE20220271

    基于特征粒径理论的镶齿滚刀最优钻压分析  English Version

    基金项目: 

    国家自然科学基金项目 2016YFC0600802

    详细信息
      作者简介:

      谭昊(1987—),男,博士,主要从事竖井掘进机和地下空间开发技术研究。E-mail:tanhao365@163.com

    • 中图分类号: TD231

    Optimal pressure of TCT roller cutter based on characteristic particle method

    • 摘要: 为解决反井钻机钻压与地层快速匹配问题,首先基于岩石破碎能量理论和岩碴Rosin-Rammler分布机理,通过理论分析证明盖克相似说下特征粒径与钻压呈高斯函数关系,邦德裂纹说和黎金格新表面说下特征粒径均与钻压呈二次函数的倒数关系,由此得到通过岩碴分析镶齿滚刀最优钻压的特征粒径理论。而后通过六排镐形镶齿滚刀的直线破岩试验,验证了特征粒径理论,证明盖克相似说和邦德裂纹说下特征粒径理论在分析六排镐形镶齿滚刀时具有较好的适用性,通过以上两种方法得到的特征粒径最大时的钻压,即为最小比能法得到的最优钻压。为了提高邦德裂纹说下特征粒径理论的拟合精度,也能使用高斯函数进行拟合。最后,将特征粒径理论应用于白鹤滩溜渣井工程,验证其在反井施工现场的适用性。
      Abstract: In order to solve the matching problem between drilling parameters and formation quickly and conveniently for raising-boring machine, firstly, based on the theory of rock crushing energy and the Rosin-Rammler distribution mechanism of ballast, the theoretical analysis shows that the characteristic particle size has Gaussian distribution relationship with the pressure under the Kick's similarity theory, and it has reciprocal quadratic function relationship with the pressure under the Bond's crack theory and the Riginger's new surface theory. Thus, the theory of the characteristic particle size under the optimal drilling pressure of insert cutters is obtained through the rock ballast analysis. Then, through the linear cutting tests on the insert cutter with six rows of picks, the theory of the characteristic particle size is verified, and it is proved that it has a good applicability for analyzing the above cutter using the Kick's similarity theory and the Bond's crack theory. The pressures obtained by the above two methods when the characteristic particle size is the largest are the optimal ones obtained by using the minimum specific energy method. In order to improve the fitting accuracy using the Bond's crack theory, the Gaussian function can also be used to fit the theory of the characteristic particle size. Finally, the theory of the characteristic particle size is put into practice in Baihetan raising-boring project, and its applicability in the construction site is verified.
    • 图  1   高斯函数拟合特征粒径理论的典型曲线

      Figure  1.   Typical experimental phenomena fit by Gaussian function

      图  2   直线破岩试验

      Figure  2.   Linear cutting tests

      图  3   典型试验现象

      Figure  3.   Typical experimental phenomena

      图  4   比能与钻压的关系

      Figure  4.   Relationship between SE and F

      图  5   岩碴粒径累计概率与粒径关系

      Figure  5.   Relationship between P and x

      图  6   特征粒径与钻压的关系

      Figure  6.   Relationship between xd and F

      图  7   高斯函数拟合特征粒径b与钻压的关系

      Figure  7.   Relationship between b and F fit by Gaussian function

      图  8   现场试验所用钻头

      Figure  8.   Drill head used in construction site

      图  9   岩碴筛分

      Figure  9.   Screening of cuttings

      图  10   岩碴粒径累计概率与粒径关系

      Figure  10.   Relationship between P and x

      图  11   特征粒径与施加钻压所用的液压系统压力关系

      Figure  11.   Relationship between xd and p

      图  12   高斯函数拟合邦德假说下的特征粒径理论

      Figure  12.   Theory of characteristic particle for size using Bond's hypothesis fit by Gaussian function

      表  1   拟合参数

      Table  1   Fitting parameters

      大理岩 花岗岩
      钻压/kN a b 钻压/kN a b
      75 0.43 2.70 25 0.39 1.05
      100 0.46 2.28 50 0.43 2.54
      125 0.47 3.90 75 0.52 4.89
      150 0.67 9.82 100 0.51 4.17
      175 1.07 11.37 125 0.55 5.29
      200 0.91 12.06 150 0.48 4.83
      下载: 导出CSV
    • [1] 龚秋明, 何冠文, 赵晓豹, 等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报, 2015, 37(1): 54-60. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16037.shtml

      GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16037.shtml

      [2] 刘泉声, 时凯, 朱元广, 等. TBM盘形滚刀破岩力计算模型研究[J]. 煤炭学报, 2013, 38(7): 1136-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201307006.htm

      LIU Quansheng, SHI Kai, ZHU Yuanguang, et al. Calculation model for rock disc cutting forces of TBM[J]. Journal of China Coal Society, 2013, 38(7): 1136-1142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201307006.htm

      [3] 马洪素, 龚秋明, 王驹, 等. 围压对TBM滚刀破岩影响规律的线性切割试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 346-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602015.htm

      MA Hongsu, GONG Qiuming, WANG Ju, et al. Linear cutting tests on effect of confining stress on rock fragmentation by TBM cutter[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 346-355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602015.htm

      [4] 姚羲和, 赵晓豹, 龚秋明, 等. 滚刀线性侵入试验中岩石破裂模式研究[J]. 岩土工程学报, 2014, 36(9): 1705-1713. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15826.shtml

      YAO Xihe, ZHAO Xiaobao, GONG Qiuming, et al. Linear cutting experiments on crack modes of rock under indentation of a single disc cutter[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1705-1713. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15826.shtml

      [5] 侯义辉, 王薇, 张心源. 球型镶齿滚刀参数对破岩比能影响性研究[J]. 铁道科学与工程学报, 2020, 17(5): 1286-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005028.htm

      HOU Yihui, WANG Wei, ZHANG Xinyuan. Study on influence of the rock breaking specific energy based on parameters of spherical insert hob[J]. Journal of Railway Science and Engineering, 2020, 17(5): 1286-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005028.htm

      [6] 吴帆, 殷丽君, 张浩, 等. 镶齿滚刀破岩机理及效率的旋转破岩试验[J]. 中国公路学报, 2018, 31(10): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201810013.htm

      WU Fan, YIN Lijun, ZHANG Hao, et al. Rock fragmentation mechanism and efficiency under inserted-tooth roller cutter by rotary cutting test[J]. China Journal of Highway and Transport, 2018, 31(10): 150-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201810013.htm

      [7]

      PAN Y C, LIU Q S, KONG X X, et al. Full-scale linear cutting test in Chongqing Sandstone and the comparison with field TBM excavation performance[J]. Acta Geotechnica, 2019, 14(4): 1249-1268. http://www.researchgate.net/profile/Pan_Yucong/publication/326729390_Full-scale_linear_cutting_test_in_Chongqing_Sandstone_and_the_comparison_with_field_TBM_excavation_performance/links/5b611a29458515c4b256d7a9/Full-scale-linear-cutting-test-in-Chongqing-Sandstone-and-the-comparison-with-field-TBM-excavation-performance.pdf

      [8]

      WANG X, WANG Q F, LIANG Y P, et al. Dominant cutting parameters affecting the specific energy of selected sandstones when using conical picks and the development of empirical prediction models[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3111-3128. doi: 10.1007/s00603-018-1522-1

      [9] 闫铁, 李玮, 毕雪亮, 等. 旋转钻井中岩石破碎能耗的分形分析[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3649-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2056.htm

      YAN Tie, LI Wei, BI Xueliang, et al. Fractal analysis of energy consumption of rock fragmentation in rotary drilling[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3649-3654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2056.htm

      [10] 闫长斌, 姜晓迪, 刘章恒, 等. 基于岩碴粒径分布规律的TBM破岩效率分析[J]. 岩土工程学报, 2019, 41(3): 466-474. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17708.shtml

      YAN Changbin, JIANG Xiaodi, LIU Zhangheng, et al. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17708.shtml

      [11] 孙金山, 卢文波, 苏利军, 等. 基于TBM掘进参数和渣料特征的岩体质量指标辨识[J]. 岩土工程学报, 2008, 30(12): 1847-1854. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13072.shtml

      SUN Jinshan, LU Wenbo, SU Lijun, et al. Rock mass rating identification based on TBM performance parameters and muck characteristics[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1847-1854. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13072.shtml

      [12] 宋克志, 季立光, 袁大军, 等. 盘形滚刀切割岩碴粒径分布规律研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3016-3022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1066.htm

      SONG Kezhi, JI Liguang, YUAN Dajun, et al. Research on distribution regularities of grain size of rock detritus from discoid cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3016-3022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1066.htm

      [13] 谭昊, 纪洪广, 曾志远, 等. 基于硬脆性岩石特征粒径的锥齿滚刀最优钻压分析[J]. 岩土工程学报, 2020, 42(4): 782-789. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18187.shtml

      TAN Hao, JI Hongguang, ZENG Zhiyuan, et al. Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 782-789. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18187.shtml

      [14] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

      XU Xiaohe, YU Jing. Rock Fragmentation[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)

      [15] 江山, 方湄, 殷秋生, 等. 颗粒粉碎能耗与粒度的关系[J]. 北京科技大学学报, 1996, 18(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD602.002.htm

      JIANG Shan, FANG Mei, YIN Qiusheng, et al. Relationship between energy consumption and particle size in comminution[J]. Journal of University of Science and Technology Beijing, 1996, 18(2): 112-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD602.002.htm

      [16] 刘雪敏, 吴玉新, 吕俊复, 等. 煤的粉碎功耗计算模型研究现状及分析[J]. 中国电机工程学报, 2013, 33(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201302002.htm

      LIU Xuemin, WU Yuxin, LU Junfu, et al. Research on calculation models of coal comminution energy consumption[J]. Proceedings of the CSEE, 2013, 33(2): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201302002.htm

      [17] 甘德清, 高锋, 孙建珍, 等. 铁矿山矿石破碎能量与粒度关系[J]. 哈尔滨工业大学学报, 2019, 51(4): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904024.htm

      GAN Deqing, GAO Feng, SUN Jianzhen, et al. Energy-size relationship of ore comminution in iron mine[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 163-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904024.htm

      [18] 吴明珠, 熊志章, 唐荣. 粉碎功耗规律的研究[J]. 有色金属(选矿部分), 1983(4): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198304006.htm

      WU Mingzhu, XIONG Zhizhang, TANG Rong. Study on the law of crushing power consumption[J]. Nonferrous Metals (Mineral Processing), 1983(4): 20-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198304006.htm

    图(12)  /  表(1)
    计量
    • 文章访问数:  272
    • HTML全文浏览量:  43
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-13
    • 网络出版日期:  2023-02-15
    • 刊出日期:  2023-05-31

    目录

      /

      返回文章
      返回