Radial migration of water-soluble agents in high-pressure rotary jetting remediation
-
摘要: 高压旋喷修复是近年来出现的污染土原位修复技术,目前对于旋喷药剂的迁移规律尚不明确,工程实践缺乏可靠的理论指导。分别以荧光素钠及氯离子为示踪剂,开展不同旋喷参数下的现场及室内高压旋喷试验,并结合数值模拟研究了射流作用及对流-扩散作用下的药剂径向迁移规律。现场旋喷5 d后的结果表明,药剂质量浓度沿径向逐渐降低,分布受旋喷参数影响明显,现场最佳旋喷参数组合为注入压力25 MPa、旋转速度22 r/min、提升速度25 cm/min、喷嘴直径1.6 mm、旋喷2次。室内旋喷试验和数值模拟表明,射流作用下混合区内药剂质量浓度线性减小,喷嘴附近相对质量浓度为0.54~0.91;混合区半径随注入压力、喷嘴直径及旋喷次数的增加而增大,随旋转速度的增加而减小;药剂质量浓度及径向均匀性与旋转速度、喷嘴直径及旋喷次数呈正相关,对流-扩散作用下的药剂迁移使混合区内质量浓度降低,扩散区质量浓度升高,径向分布趋向均匀;虽然孔压消散仅需短短几分钟,但其引起的对流在约30 d内对药剂迁移起主导作用,之后扩散变为主要作用。Abstract: The high-pressure rotary jetting (HPRJ) is a new technology for the in-situ remediation of contaminated soils. However, the radial migration of water-soluble remediation agents in HPRJ is still not clear, resulting in a lack of reliable theoretical guidance in engineering practice. The laboratory and in-situ HPRJ tests as the well as numerical simulations are performed using the sodium chloride and fluorescein sodium as the tracers to investigate the radial migration and distribution of agents under the effects of jet and advection-diffusion. The results of the in-situ tests after 5 d show that the agent concentration decreases along the radial direction and is significantly affected by the rotary jetting parameters. The optimum combination of the rotary jetting parameters is an injection pressure of 25 MPa, a lifting speed of 25 cm/min, a rotation speed of 22 r/min, a nozzle diameter of 1.6 mm and jetting of twice. The laboratory tests and the numerical simulations show that concentration of the agent in the mixing zone decreases linearly, with a relative concentration of 0.54 to 0.91 near the nozzle. The radius of the mixing zone increases with the increase in the nozzle diameter, injection pressure and the number of jetting times, and decreases with the increasing rotation speed. The agent concentration and radial uniformity are correlated positively with the rotation speed, nozzle diameter and the number of jetting times. The migration of the agent due to advection and diffusion reduces the agent in the mixing zone and increases the agent in the diffusion zone, and homogenizes the radial agent distribution. The advection only lasts for a few minutes, however, it dominates the agent migration in the first 30 d, and thereafter the diffusion becomes more important.
-
-
表 1 现场试验方案
Table 1 Schemes of in-situ tests
编号 注入压力/MPa 提升速度/(cm·min-1) 旋转速度/(r·min-1) 喷嘴直径/mm 旋喷次数 F1 25 25 22 2.0 1 F2 25 40 1.6 1 F3 25 25 1.6 2 F4 25 25 1.6 1 F5 30 25 1.6 1 表 2 室内试验方案
Table 2 Schemes of laboratory tests
编号 注入压力/MPa 提升速度/(cm·min-1) 旋转速度/(r·min-1) 喷嘴直径/mm 旋喷次数 L1 5 30 30 1.6 1 L2 5 30 1.6 2 L3 10 30 1.6 1 L4 10 30 1.6 2 L5 15 30 1.6 1 L6 15 15 1.6 1 L7 15 10 1.6 1 L8 15 30 1.8 1 L9 15 30 2.0 1 L10 15 30 2.0 2 表 3 Cl-径向分布相关参数
Table 3 Parameters for radial distribution of Cl-
编号 xm/
cmC1,x=0/
(mg·L-1)C′1,x=0 ΔC1Δx/
(mg·L-1·cm-1)L1 15 2249 0.63 39.80 L2 20 2510 0.71 17.14 L3 20 2324 0.65 37.31 L4 25 2849 0.80 21.71 L5 25 2346 0.66 38.17 L6 25 2075 0.58 42.85 L7 30 1918 0.54 45.88 L8 25 2550 0.72 30.22 L9 30 2822 0.79 24.49 L10 35 3230 0.91 17.40 -
[1] GUO X Z, ZHANG W J, YU H S, et al. Reduction, stabilization, and solidification of Cr(VI) in contaminated soils with a sustainable by-product-based binder[J]. Chemosphere, 2022, 307: 135902. doi: 10.1016/j.chemosphere.2022.135902
[2] 孙铁珩, 李培军, 周启星. 土壤污染形成机理与修复技术[M]. 北京: 科学出版社, 2005. SUN Tieheng, LI Peijun, ZHOU Qixing. Formation Mechanism and Remediation Technology of Soil Pollution[M]. Beijing: Science Press, 2005. (in Chinese)
[3] XIA W Y, DU Y J, LI F S, et al. In-situ solidification/ stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder[J]. Journal of Hazardous Materials, 2019, 369: 353-361. doi: 10.1016/j.jhazmat.2019.02.031
[4] 夏威夷, 杜延军, 冯亚松, 等. 重金属污染场地原位固化稳定化修复试验研究[J]. 岩石力学与工程学报, 2017, 36(11): 2839-2849. XIA Weiyi, DU Yanjun, FENG Yasong, et al. Remediation of a heavy metal contaminated site: in situ solidification and stabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2839-2849. (in Chinese)
[5] 杨乐巍, 张晓斌, 李书鹏, 等. 土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J]. 环境工程, 2018, 36(12): 48-53, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201812012.htm YANG Yuewei, ZHANG Xiaobin, LI Shupeng, et al. Case analysis on engineering application of soil and groundwater in situ injection-high pressure rotary jet injection remediation[J]. Environmental Engineering, 2018, 36(12): 48-53, 118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201812012.htm
[6] MODONI G, CROCE P, MONGIOVÌ L. Theoretical modelling of jet grouting[J]. Géotechnique, 2006, 56(5): 335-347. doi: 10.1680/geot.2006.56.5.335
[7] SHIBAZAKI M. State of practice of jet grouting[M]// Grouting and Ground Treatment. Reston: American Society of Civil Engineers, 2003: 198-217.
[8] 王志丰, 沈水龙, 许烨霜. 基于圆形断面自由紊动射流理论的旋喷桩直径计算方法[J]. 岩土工程学报, 2012, 34(10): 1957-1960. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14866.shtml WANG Zhifeng, SHEN Shuilong, XU Yeshuang. An approach to calculate diameter of jet-grouted columns based on turbulent flow theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1957-1960. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14866.shtml
[9] SHEN S L, WANG Z F, YANG J, et al. Generalized approach for prediction of jet grout column diameter[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2060-2069. doi: 10.1061/(ASCE)GT.1943-5606.0000932
[10] 宋刚练, 牌卫卫, 江建斌, 等. 应用于污染场地原位修复的旋喷工艺研究[J]. 探矿工程(岩土钻掘工程), 2017, 44(7): 85-89. doi: 10.3969/j.issn.1672-7428.2017.07.017 SONG Ganglian, PAI Weiwei, JIANG Jianbin, et al. Research on rotary jet grouting technology applied in situ remediation of contaminated site[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(7): 85-89. (in Chinese) doi: 10.3969/j.issn.1672-7428.2017.07.017
[11] 宛召. 高压旋喷工艺在上海某污染场地修复中的应用研究[D]. 长春: 吉林大学, 2017. WAN Zhao. Study on the Application of High Pressure Jet Grouting Technology in the Remediation of a Contaminated Site in Shanghai[D]. Changchun: Jilin University, 2017. (in Chinese)
[12] 董万涛. 新型复合氧化剂在石油污染场地修复的应用研究[D]. 兰州: 兰州理工大学, 2021. DONG Wantao. Research on Application of New Complex Oxidants in Petroleum Contaminated Site[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
[13] WANG Z F, SHEN S L, MODONI G, et al. Excess pore water pressure caused by the installation of jet grouting columns in clay[J]. Computers and Geotechnics, 2020, 125: 103667. doi: 10.1016/j.compgeo.2020.103667
[14] ZHANG W J, YUAN S S. Characterizing preferential flow in landfilled municipal solid waste[J]. Waste Management. 2019, 84: 20-28.
[15] XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836.
[16] SHACKELFORD C D. The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics[J]. Canadian Geotechnical Journal, 2014, 51(11): 1219-1242.
[17] FETTER C W, BOVING T, KREAMER D. Contaminant Hydrogeology[M]. Long Grove: Waveland Press, 2017.
-
其他相关附件