• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体导热系数温度效应及其预测模型

徐云山, 肖子龙, 孙德安, 陈军浩, 曾召田

徐云山, 肖子龙, 孙德安, 陈军浩, 曾召田. 土体导热系数温度效应及其预测模型[J]. 岩土工程学报, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
引用本文: 徐云山, 肖子龙, 孙德安, 陈军浩, 曾召田. 土体导热系数温度效应及其预测模型[J]. 岩土工程学报, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
Citation: XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243

土体导热系数温度效应及其预测模型  English Version

基金项目: 

国家自然科学基金项目 42202295

福建省科技厅青创项目 2021J05219

福建工程学院科研启动基金项目 GY-Z21013

详细信息
    通讯作者:

    孙德安, E-mail: sundean@shu.edu.cn

  • 中图分类号: TU43

Temperature effects and prediction model of thermal conductivity of soil

  • 摘要: 考虑环境温度变化对土体导热系数的影响,对于地下热工项目的优化设计和安全评价是必要的。利用热探针法测试了不同温度下红黏土、粉土、软土和膨润土的导热系数,分析了土体导热系数的温度效应及其影响因素,建立了考虑导热系数温度效应的加权几何平均模型,并与传统的预测模型进行对比分析。试验结果表明:土体导热系数随温度的增加而增大,其温度效应随干密度的增大而减小,温度对非饱和土体导热系数的影响较大,对于干燥和饱和土体导热系数的影响较微弱。温度对土体导热系数的影响可能取决于水汽潜热传输作用的变化,土中可提供潜热传输的水分和水汽运移通道越多,土体导热系数的温度效应越显著。模型计算结果表明,提出的加权几何平均模型预测性能良好,且较好预测了含水率和干密度对土体导热系数温度效应的影响,而Tarnawski模型、Gori模型、Leong模型预测精度均低于加权几何平均模型。
    Abstract: Considering the influences of environmental temperature on thermal conductivity of soil is necessary for the optimization design and safety assessment of underground thermal engineering projects. The thermal conductivities of lateritic clay, silt clay, soft clay and bentonite at different temperatures are measured by using the thermal probe method, and the temperature effects of thermal conductivity of soil and its influencing factors are analyzed. A weighted geometric average model considering the temperature effects of thermal conductivity of soil is then established, and is compared with the traditional predictive models. The test results show that the thermal conductivity of soil increases with the increase of temperature, and its temperature effects decrease with the increase of dry density. The temperature has a great influence on the thermal conductivity of unsaturated soil, but a weak influence on the thermal conductivity of dry and saturated soil. The temperature effects of thermal conductivity of soil may depend on the change of the latent heat transfer of vapor. The more the moisture and vapor migration channels that can provide for the latent heat transfer of vapor in soil, the more significant the temperature effects of thermal conductivity of soil. The calculated results show that the proposed weighted geometric average model provides the best fitting to the measured data against the three other traditional models, and can predict well the influences of water content and dry density on the temperature effects of thermal conductivity of soil, while the prediction accuracy of the Tarnawski model, Gori model and Leong model is lower than that of the weighted geometric average model.
  • 图  1   不同温度下试样的导热系数测试

    Figure  1.   Measurement of thermal conductivity of samples subjected to different temperatures

    图  2   Leong模型的结构原理图

    Figure  2.   Structural diagram of Leong model

    图  3   不同含水率试样导热系数随温度的变化

    Figure  3.   Change in thermal conductivity of samples with different water contents with temperature

    图  4   不同干密度试样导热系数随温度的变化

    Figure  4.   Change in thermal conductivity of samples with different dry densities with temperature

    图  5   导热系数模型预测值和实测值对比

    Figure  5.   Comparison of measured and predicted thermal conductivities of soil

    图  6   平均几何模型预测值和实测值对比

    Figure  6.   Comparison between predicted and measured values of average geometric model

    图  7   含水率对土体导热系数温度效应影响的预测

    Figure  7.   Prediction of influences of water content on temperature effects of thermal conductivity of soil

    图  8   干密度对土体导热系数温度效应影响的预测

    Figure  8.   Prediction of influences of dry density on temperature effects of thermal conductivity of soil

    表  1   供试土样的基本物性指标

    Table  1   Physical property indexes of soil samples

    土样 相对质量密度 液限/ % 塑限/% 塑性指数 颗粒级配/%
    砂粒2~0.05 mm 粉粒0.05~0.002 mm 黏粒 < 0.002 mm
    红黏土 2.74 61.8 38.1 23.7 7.89 47.02 45.09
    粉质黏土 2.72 27.6 16.5 11.1 27.10 52.54 20.36
    软土 2.73 40.6 20.5 20.1 3.75 69.44 26.81
    GMZ07膨润土 2.76 163.0 32.0 131.0 56.40 43.60
    下载: 导出CSV

    表  2   供试土样的矿物成分

    Table  2   Mineral compositions of soil samples 单位: %

    土样 蒙脱石 高岭石 伊利石 长石 石英 其他
    红黏土 50.7 12.0 9.9 12.7 14.7
    粉质黏土 51.0 19.0 11.5 18.5
    软土 31.2 23.0 45.8
    GMZ07膨润土 62.0 11.0 10.0 17.0
    下载: 导出CSV
  • [1]

    HAN L, YE G L, LI Y H, et al. In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method[J]. Canadian Geotechnical Journal, 2016, 53(3): 530–539. doi: 10.1139/cgj-2014-0486

    [2] 王驹, 苏锐, 陈伟明, 等. 中国高放废物深地质处置[J]. 岩石力学与工程学报, 2006, 25(4): 649-658. doi: 10.3321/j.issn:1000-6915.2006.04.001

    WANG Ju, SU Rui, CHEN Weiming, et al. Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658. (in Chinese)) doi: 10.3321/j.issn:1000-6915.2006.04.001

    [3] 张虎元, 赵秉正, 童艳梅. 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-9, 18. doi: 10.16285/j.rsm.2019.0865

    ZHANG Huyuan, ZHAO Bingzheng, TONG Yanmei. Thermal conductivity and uniformity of hybrid buffer blocks[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-9, 18. (in Chinese)) doi: 10.16285/j.rsm.2019.0865

    [4] 陆浩杰, 孔纲强, 刘汉龙, 等. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. doi: 10.11779/CJGE202201004

    LU Haojie, KONG Gangqiang, LIU Hanlong, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese)) doi: 10.11779/CJGE202201004

    [5]

    OCŁOŃ P, BITTELLI M, CISEK P, et al. The performance analysis of a new thermal backfill material for underground power cable system[J]. Applied Thermal Engineering, 2016, 108: 233-250. doi: 10.1016/j.applthermaleng.2016.07.102

    [6]

    ALI M A, BOUAZZA A, SINGH R M, et al. Thermal conductivity of geosynthetic clay liners[J]. Canadian Geotechnical Journal, 2016, 53(9): 1510-1521. doi: 10.1139/cgj-2015-0585

    [7] 刘晨晖, 周东, 吴恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886. http://www.cgejournal.com/cn/article/id/14443

    LIU Chenhui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886. (in Chinese)) http://www.cgejournal.com/cn/article/id/14443

    [8]

    ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. doi: 10.2136/sssaj2000.6441285x

    [9]

    CÔ TÉ J, KONRAD J M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials[J]. International Journal of Heat and Mass Transfer, 2009, 52(3/4): 796-804. http://www.onacademic.com/detail/journal_1000034585683810_f6ca.html

    [10] 李建东, 王旭, 张延杰, 等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192. doi: 10.16285/j.rsm.2020.0671

    LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 42(1): 186-192. (in Chinese)) doi: 10.16285/j.rsm.2020.0671

    [11] 徐永丽, 董子建, 周吉森, 等. 冻融及不同温度下石灰改良盐渍土动力参数研究[J]. 岩土工程学报, 2022, 44(1): 90-97. doi: 10.11779/CJGE202201008

    XU Yongli, DONG Zijian, ZHOU Jisen, et al. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97. (in Chinese)) doi: 10.11779/CJGE202201008

    [12] 陆森, 任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18. doi: 10.3969/j.issn.1002-6819.2009.07.003

    LU Sen, REN Tusheng. Model for predicting soil thermal conductivity at various temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 13-18. (in Chinese)) doi: 10.3969/j.issn.1002-6819.2009.07.003

    [13]

    HIRAIWA Y, KASUBUCHI T. Temperature dependence of thermal conductivity of soil over a wide range of temperature (5-75℃)[J]. European Journal of Soil Science, 2000, 51(2): 211-218. doi: 10.1046/j.1365-2389.2000.00301.x

    [14] DE VRIES D A. Thermal properties of soils[M]// Physics of the Plant Environment. New York: John Wiley & Sons, 1963: 210–235.
    [15]

    CAMPBELL G S, JUNGBAUER J D JR, BIDLAKE W R, et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science, 1994, 158(5): 307-313. doi: 10.1097/00010694-199411000-00001

    [16]

    TARNAWSKI V R, GORI F, WAGNER B, et al. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research, 2000, 24(5): 403-423. doi: 10.1002/(SICI)1099-114X(200004)24:5<403::AID-ER588>3.0.CO;2-#

    [17]

    TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research, 2000, 24(15): 1335-1350. doi: 10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X

    [18]

    TARNAWSKI V R, LEONG W H, GORI F, et al. Inter-particle contact heat transfer in soil systems at moderate temperatures[J]. International Journal of Energy Research, 2002, 26(15): 1345-1358. doi: 10.1002/er.853

    [19]

    LEONG W H, TARNAWSKI V R, GORI F, et al. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures[J]. International Journal of Energy Research, 2005, 29(2): 131-144. http://www.onacademic.com/detail/journal_1000033835823010_a7ac.html

    [20] 张延军, 于子望, 黄芮, 等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217. http://www.cgejournal.com/cn/article/id/13137

    ZHANG Yanjun, YU Ziwang, HUANG Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. (in Chinese) http://www.cgejournal.com/cn/article/id/13137

    [21]

    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: Trondheim University, 1977.

    [22]

    GORI F, CORASANITI S. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 2002, 124(6): 1001–1008. http://www.onacademic.com/detail/journal_1000039881038510_246d.html

    [23]

    RAWLS W J, BRAKENSIEK D L, SAXTONN K E. Estimation of soil water properties[J]. Transactions of the ASAE, 1982, 25(5): 1316-1320. http://www.onacademic.com/detail/journal_1000040323169810_e328.html

    [24]

    WEBB S W, HO C K. Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: does enhanced vapor-phase diffusion exist?[J]. Journal of Porous Media, 1998, 1(1): 71-92. http://digital.library.unt.edu/ark:/67531/metadc668347/m2/1/high_res_d/242788.pdf

    [25]

    WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. II. consolidated rocks[J]. Journal of Applied Physics, 1961, 32(9): 1699-1706. http://gji.oxfordjournals.org/external-ref?access_num=10.1063/1.1728420&link_type=DOI

    [26]

    NIKOLAEV I V, LEONG W H, ROSEN M A. Experimental investigation of soil thermal conductivity over a wide temperature range[J]. International Journal of Thermophysics, 2013, 34(6): 1110-1129.

    [27]

    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222. http://www.onacademic.com/detail/journal_1000037379730410_e312.html

    [28]

    TANG A M, CUI Y J. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296. http://arxiv.org/abs/0710.1850

    [29]

    ZHU Z C, SUN D A, ZHOU A N, et al. Calibration of two filter papers at different temperatures and its application to GMZ bentonite[J]. Environmental Earth Sciences, 2016, 75(6): 509. http://www.onacademic.com/detail/journal_1000038747726510_dfef.html

    [30] 王平全, 李晓红. 用热失重法确定水合黏土水分含量及存在形式[J]. 天然气工业, 2006, 26(1): 80-83, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm

    WANG Pingquan, LI Xiaohong. Thermal-weightlessness method to determine water content and existing form of hydratable clay[J]. Natural Gas Industry, 2006, 26(1): 80-83, 164. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm

图(8)  /  表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  92
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回