Temporal-spatial distribution characteristics and prediction model of pressures around rectangular pipe jacking in sand layer
-
摘要: 顶管施工中的管周压力时空分布特征是研究顶进力、摩阻力、管节结构内力、泥浆渗透规律的基础,但目前针对矩形顶管的相关研究较少。依托苏州矩形顶管工程,首先基于原位监测结果分析施工时管节顶部、侧壁、底部的压力时空分布规律,然后建立泥浆滤失过程中的管周压力预测模型,基于矩形顶管管土接触状态及受力特点提出预测函数中相关参数的求解方法,最后对比检验预测值与实测值。结果表明:管周压力在注浆-滤失过程中随时间依次经历快速增长阶段、快速下降阶段和缓慢下降阶段;管周同一深度的管周压力及变化速率基本一致,而不同深度在各阶段的管周压力、压力稳定值、变化速率有所区别;采用对数回归函数可较好拟合现场实测值,相关参数的求解考虑了土体性质、覆土埋深、地下水压力、管节自重、泥浆浮力、实际注浆压力等工程参数,适用于预测类似矩形顶管工程施工中的管周压力。Abstract: The distribution characteristics of pressures around pipes are the basis for calculating the jacking force, friction resistance, internal force and mud permeability. However, there are few researches on rectangular pipe jacking. Based on a rectangular pipe jacking project, the pressure are monitored at different locations around the pipe during construction. The temporal and spatial variation characteristics of the pressures are analyzed, and the prediction model for the pressures in the process of permeability of mud is established. The method for calculating the related parameters is proposed based on the pipe-soil contact state and mechanical characteristics, and the predicted values by this model are compared with the measured ones. The results show that the pressures experience rapid growth stage, rapid decline stage and slow decline stage in the process of grouting-filtration. The pressures and change rates at the same depth are basically the same, but the pressures as well as their stability values and change rates at different depths are different. Meanwhile, the pressures at each location around the rectangular pipe conform to logarithmic regression function at mud filtration cycle. The calculation of the relevant parameters takes into account the engineering parameters such as soil properties, buried depth, groundwater pressure, pipe weight, mud buoyancy and actual grouting pressure. It is suitable for predicting the contact pressures of similar rectangular pipe jacking projects.
-
-
表 1 地层基本参数
Table 1 Parameters of soil strata
代号 地层 厚度/m 含水率/% 天然密度/
(g·cm-3)孔隙比 黏聚力/
kPa内摩擦角/
(°)垂直渗透系数/
(cm·s-1)①-5 素填土 4.3 30.4 1.92 0.865 27.9 16.8 3.2×10-6 ④ 黏土 2.0 26.2 1.99 0.737 41.4 15.7 1.3×10-7 ⑤ 粉质黏土夹粉土 1.3 30.0 1.92 0.841 16.8 22.7 5.4×10-6 ⑥-1 粉砂夹粉土 4.4 30.2 1.91 0.836 4.6 31.4 1.6×10-3 ⑥-2 粉砂 4.0 28.9 1.94 0.789 3.8 33.4 2.1×10-3 ⑦ 粉质黏土 5.7 29.9 1.93 0.840 25.7 17.7 4.6×10-6 表 2 预测函数所需参数计算值
Table 2 Calculated values of parameters for prediction function
管节位置 PB/kPa A/kPa B/(kPa·h-1) 实际注浆压力 理论水土压力 实际注浆压力 理论水土压力 拟合值
(图 8(c)中位数)160 190 189.28 顶部 114.38 160 190 189.28 16.333 23.844 23.671 8.237 侧壁上部 80.00 24.888 31.798 31.636 14.140 侧壁中部 94.50 21.386 28.506 28.341 12.880 侧壁下部 115.00 16.169 23.695 23.522 28.090 底部 81.00 24.651 31.573 31.411 13.445 -
[1] CHEN X L, MA B S, NAJAFI M, et al. Long rectangular box jacking project: a case study[J]. Underground Space, 2021, 6(2): 101-125. doi: 10.1016/j.undsp.2019.08.003
[2] 许有俊, 文中坤, 闫履顺, 等. 多刀盘土压平衡矩形顶管隧道土体改良试验研究[J]. 岩土工程学报, 2016, 38(2): 288-296. doi: 10.11779/CJGE201602012 XU Youjun, WEN Zhongkun, YAN Lüshun, et al. Experimental study on soil improvement during construction of EPB rectangular pipe jacking with multi-cutter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 288-296. (in Chinese) doi: 10.11779/CJGE201602012
[3] 张鹏. 拱北隧道超大型曲线顶管管幕施工关键技术及理论研究[D]. 武汉: 中国地质大学, 2018. ZHANG Peng. Research on Key Construction Techniques and Theory of Super Large Curved Pipe Jacking Roof in Gongbei Tunnel [D]. Wuhan: China University of Geosciences, 2018. (in Chinese)
[4] MARSTON A, ANDERSON A O. The Theory of Loads on Pipe in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe[D]. Ames: Iowa Engineering Experiment Station, 1913.
[5] SPANGLER M G. A theory on loads on negative projecting conduits[C]// Highway Research Board Proceedings No. 00204134. Washington D C, 1950.
[6] TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.
[7] ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183-196. doi: 10.1016/j.tust.2016.09.005
[8] 蒋洪胜, 侯学渊. 软土地层中的圆形隧道载荷模式研究[J]. 岩石力学与工程学报, 2003, 22(4): 651-658. doi: 10.3321/j.issn:1000-6915.2003.04.029 JIANG Hongsheng, HOU Xueyuan. Study of the loading pattern on circular tunnel in soft ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 651-658. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.04.029
[9] MILLIGAN G W E, NORRIS P. Pipe–soil interaction during pipe jacking[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1999, 137(1): 27-44. doi: 10.1680/gt.1999.370104
[10] 魏纲, 徐日庆, 余剑英, 等. 顶管施工中管道受力性能的现场试验研究[J]. 岩土力学, 2005, 26(8): 1273-1277. doi: 10.3969/j.issn.1000-7598.2005.08.017 WEI Gang, XU Riqing, YU Jianying, et al. Site-based experimental study on pipe behavior during pipe jacking[J]. Rock and Soil Mechanics, 2005, 26(8): 1273-1277. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.08.017
[11] 冯海宁, 温晓贵, 魏纲, 等. 顶管施工对土体影响的现场试验研究[J]. 岩土力学, 2003, 24(5): 781-785. doi: 10.3969/j.issn.1000-7598.2003.05.035 FENG Haining, WEN Xiaogui, WEI Gang, et al. In-situ test research on influence of pipe jacking on soil[J]. Rock and Soil Mechanics, 2003, 24(5): 781-785. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.05.035
[12] 刘翔. 软土中4 m直径混凝土顶管施工管土受力特性测试与分析[D]. 上海: 上海交通大学, 2014. LIU Xiang. Site-based Experimental Study on Characteristic of Pipe-Soil Interaction of 4 m Diameter Jacking Pipe in Soft Soil[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
[13] NIU Guolun, MA Baosong, ZHANG Peng, et al. Measurement analysis of pipe-soil interaction in large-diameter pipe jacking project of a power tunnel in Foshan, China[J]. Tunnel Construction, 2021, 41(8): 1353-1360.
[14] 袁心, 马保松, 赵阳森, 等. 矩形顶管施工中管周压力的实测与分析[J]. 地下空间与工程学报, 2021, 17(4): 1225-1233. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202104029.htm YUAN Xin, MA Baosong, ZHAO Yangsen, et al. Field measurement and analysis of pipe pressure during box jacking construction[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1225-1233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202104029.htm
[15] 闵凡路, 吕焕杰, 宋帮红, 等. 砂地层孔径分析及其对泥浆在地层中渗透性的影响[J]. 中国公路学报, 2020, 33(3): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003013.htm MIN Fanlu, LÜ Huanjie, SONG Banghong, et al. Pore size analysis and its influence on slurry infiltration in sandy layers[J]. China Journal of Highway and Transport, 2020, 33(3): 144-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003013.htm
[16] 林钰丰, 张尚达, 方勇, 等. 不同渗透系数地层中泥浆渗透成膜试验研究[J]. 中国公路学报, 2020, 33(12): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202012016.htm LIN Yufeng, ZHANG Shangda, FANG Yong, et al. Experimental study on filter cake for slurry infiltration in different permeability strata[J]. China Journal of Highway and Transport, 2020, 33(12): 190-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202012016.htm
[17] 周中, 张俊杰, 张称呈, 等. 泥水盾构泥浆渗透-扩散时空演化解析模型[J]. 岩土力学, 2021, 42(8): 2185-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108014.htm ZHOU Zhong, ZHANG Junjie, ZHANG Chengcheng, et al. Analytical model for the spatial-temporal evolution of slurry penetration-diffusion in a slurry shield[J]. Rock and Soil Mechanics, 2021, 42(8): 2185-2194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108014.htm
[18] 毛家骅, 袁大军, 杨将晓, 等. 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007015.htm MAO Jiahua, YUAN Dajun, YANG Jiangxiao, et al. A theoretical study of porosity characteristics on the excavation face of slurry shield in sand stratum[J]. Rock and Soil Mechanics, 2020, 41(7): 2283-2292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007015.htm
[19] 林天翔, 冯少孔, 叶冠林, 等. 顶管施工中管壁与围土间不同接触关系的冲击响应特征[J]. 岩土工程学报, 2021, 43(10): 1924-1932, 1961. doi: 10.11779/CJGE202110019 LIN Tianxiang, FENG Shaokong, YE Guanlin, et al. Impact response characteristics under different contact relationships between pipe and soil in pipe-jacking construction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1924-1932, 1961. (in Chinese) doi: 10.11779/CJGE202110019
[20] XUE Qingsong. Calculation and measurement analysis of jacking force of large cross-section rectangular pipe jacking machine used in Suzhou Chengbei Road[J]. Tunnel Construction, 2020, 40(12): 1717-1724.
[21] 雷华阳, 刘旭, 施福硕, 等. 顶管工程聚合物改性膨润土泥浆配比优化研究[J]. 岩土工程学报, 2021, 43(增刊2): 51-55. doi: 10.11779/CJGE2021S2012 LEI Huayang, LIU Xu, SHI Fushuo, et al. Proportional optimization of polymer-modified bentonite slurry in pipe jacking[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 51-55. (in Chinese) doi: 10.11779/CJGE2021S2012
[22] HASHIMOTO T, BRINKMAN J. Simultaneous backfill grouting, pressure development in construction phase and in the long-term[J]. Tunnelling and Underground Space Technology, 2004, 19(4/5): 447. http://www.researchgate.net/profile/Tadashi_Hashimoto4/publication/268182654_Simultaneous_Backfill_Grouting_Pressure_Development_in_Construction_Phase_and_in_the_Long-Term/links/559df2ae08aec72001828ecd.pdf
-
其他相关附件