Seismic response analysis and damage assessment of urban water supply networks considering influences of crossing pipelines
-
摘要: 以北京市某地区埋地供水管网为实例,通过直线型和交叉型典型管道二维有限元模型,系统分析了管道规格、接口形式、场地条件、地震动强度等级和地震动入射角等关键参数对管道接口轴向和转角变形的影响,得到了不同设防烈度地震动作用下该供水管网的损伤情况。基于国内外管道接口试验数据统计分析结果,确定了基于接口变形量的管道损伤判定准则,并用于不同管道接口类型地震损伤评价,建立了不同场地条件下典型管道接口地震损伤数据库。根据管道属性、场地信息和管道接口地震损伤数据库,基于GIS软件绘制管网地震损伤分布图。结果表明:相同烈度地震作用下,管线交叉处接口峰值变形量约为直管线接口的1.5倍~2.0倍,其中与法兰接口邻接的承插式接口存在峰值变形突变。罕遇烈度地震动作用下的管网地震损伤程度远高于设防烈度,且破坏多集中于Ⅳ类场地和管线交叉处。Abstract: Based on a buried water supply network in Beijing, the two-dimensional finite element models for the network are developed in this study. The influences of the critical parameters, such as the pipe diameter, joint type, site condition, intensity level of ground motion and incident angle of seismic wave, on the axial and bending deformations of pipe joints are systematically investigated, and the seismic damage status of the water supply network under different intensity levels of earthquakes is evaluated. Moreover, the criteria for damage assessment of the pipelines based on joint deformation are developed through the statistical analysis of the test results of the worldwide pipeline joints. These criteria are subsequently used for the seismic damage assessment of different types of pipeline joints. A seismic damage database of typical pipeline joints buried in different engineering sites is established. Finally, according to the pipeline properties, engineering site conditions and seismic damage database of typical pipeline joints, the seismic damage distribution maps of water supply networks are developed using the GIS. It is found that the peak deformations of the joints at the pipeline cross junctions are about 1.5 to 2.0 times those of the joints in a straight pipeline under the same intensity of earthquake ground motions. Besides, sudden changes of the peak seismic deformations occur at the push-on joints adjacent to the flange joints. The pipeline network suffers much more severe seismic damage under the considered maximum earthquake than under the design level of earthquake. The seismic damage mainly concentrates in the site class Ⅳ and the cross junction of the pipelines.
-
全球性的气候问题与突发自然灾害使得岩土及地下工程灾变问题不断凸现,给岩土工程安全与运营构成巨大挑战。岩土体作为地球表面最为广泛存在的地质材料具有复杂的物理力学特性与显著的时空变异性。岩土工程物理模拟试验技术通过融合多学科知识模拟和再现岩土体在自然与工程状态下的物理力学行为,为复杂岩土工程问题的解决提供强力支撑。“交通强国”等重大国家战略的实施也给岩土工程带来了巨大的历史机遇。岩土工程防灾减灾问题由于其普遍性、迫切性和前沿性也成为岩土及地下工程领域研究的新热点。随着科技的进步,岩土工程物理模拟试验技术也正从传统的重力场模拟、离心试验,向数字与智能化转变,而世界级超大型试验设备的建设,更将极大驱动我国岩土工程物理模拟试验技术的未来发展。
为促进我国岩土工程物理模拟试验技术学术交流,由中国水利学会岩土力学专业委员会和中国土木工程学会土力学及岩土工程分会共同主办,交通运输部天津水运工程科学研究院、南京水利科学研究院、中交天津港湾工程研究院有限公司以及天津大学承办的第十届岩土工程物理模拟学术研讨会于2024年8月在天津市滨海新区举行。本届会议是继武汉(2011年)、杭州(2013)、北京(2017)、喀什(2023)会议后全国岩土工程物理模拟试验技术领域的又一次学术盛会。会议筹备期间共收到投稿论文113篇,经过审稿委员会的审议向《岩土工程学报》(增刊)推荐稿件51篇,并在学报2024年增刊1专刊出版。同时,本届研讨会举办了砂土场地桩基水平承载力平行试验,并以特邀报告、主题报告、青年学者报告等在内的形式开展广泛深入的交流,展现最新模拟技术和研究成果,探讨岩土工程物理模拟试验技术在交通强国基础设施建设与防灾减灾研究中的应用,以促进岩土工程物理模拟试验技术对我国重大战略和重大工程的技术支撑作用。
感谢对本届会议召开鼎力相助的交通运输部天津水运工程科学研究院及各有关单位,感谢向本届会议投稿的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。
第十届全国岩土工程物理模拟学术研讨会组委会 -
表 1 研究区域代表性地层参数信息
Table 1 Representational parameters of soil layers in target region
场地编号 土层种类 厚度
H/m密度
ρ/(kg·m-3)弹性模量
E/MPa剪切波速
Vs/(m·s-1)场地
类别① 杂填土 3 1700 4 100 Ⅲ类 粉土 4 1850 12 75 中砂、细砂 5 1900 32 200 粉质黏土 6 1900 70 375 ② 碎石填土 4 1800 10 80 Ⅳ类 细砂、粉砂 7 2300 56 180 细砂、中砂 4 2400 80 200 砂质粉土 7 1400 20 360 管径 峰值轴力Fu/kN 接触转角θ1/(°) 接触弯矩M1/(kN·m) 极限转角θ2/(°) 极限弯矩M2/(kN·m) 150 9.2 7.0 1.46 13.1 14.83 200 11.6 6.6 2.86 12.5 7.60 300 17.4 5.8 3.57 — — 400 21.0 3.9 6.00 10.5 10.00 表 3 球墨铸铁管道接口拉伸试验结果统计
Table 3 Statistics of tensile test results of DI pipe joints
样本
编号直径D/mm 管内水压P/MPa 接口渗漏张开量Δu/mm 安装深度dp/mm 随机变量X
(Δu/dp)参考文献 1 100~250 — 30.5 — — Singhal等[15] 2 200 0.4 41~49.16 100 0.41~0.492 刘为民等[16] 3 150 0.2 70~80 94 0.745 周静海等[17] 4 200 0.2 65 100 0.65 5 200 0.6 48 100 0.48 同济大学[18-19] 6 200 0.2 51.7~66.98 100 0.517~0.67 7 150 0.38 56 85.8 0.653 Wham等[20] 8 200 1.0 60 100 0.6 王颂翔[21] 9 150 0.2 52.6~53.1 100 0.526~0.531 李冠潮[22] 10 200 55.3~56.2 100 0.553~0.562 11 300 51~54 100 0.51~0.54 12 150 0~0.3 54.15~55.77 94 0.576~0.593 李晓晓等[23],钟紫蓝等[24] 13 200 0,0.1 60,58 100 0.6,0.58 14 400 0 50 110 0.455 表 4 研究区域管道规格
Table 4 Pipeline types in target region
管道
编号规格/mm 1 100×9×6000 2 200×12×6000 3 400×15×6000 4 600×15.8×6000 5 1000×18×6000 注:规格为内径×壁厚×长度。 表 5 交叉管线接口响应结果
Table 5 Seismic responses of cross-type pipeline joints
公称直径 承插式接口 法兰接口 峰值张开量dmax/mm 峰值转角Rmax/(°) 峰值压缩量
Pmax/mm峰值转角Rmax/(°) 100 6.33 1.9×10-2 0.872 2.20×10-3 200 6.37 2.0×10-2 0.611 0.90×10-3 400 6.40 2.1×10-2 0.518 0.26×10-3 600 6.46 2.3×10-2 0.494 0.18×10-3 1000 6.54 3.8×10-2 0.287 0.10×10-3 表 6 管线接口损伤表
Table 6 Statistics of damage of pipeline joints
接口形式 场地类型 管径 多通形式 地震动等级 损伤分类 承插式接口 Ⅲ类 All 直线/L型 E1/E2/E3 基本完好 T型/十字型/斜交型 E2 基本完好 E3 中等破坏 Ⅳ类 All All E1 基本完好 直线/L型 E2 基本完好 T型/十字型/斜交型 中等破坏 直线/L型 E3 中等破坏 <DN600 T型/十字型/斜交型 中等破坏 ≥DN600 严重破坏 法兰接口 Ⅲ类 All L型 E1/E2/E3 基本完好 DN100 T型/十字型/斜交型 E1 基本完好 E2/E3 中等破坏 DN200 E1/E2 基本完好 E3 中等破坏 ≥DN400 E1/E2/E3 基本完好 Ⅳ类 All L型 E1/E2/E3 基本完好 DN100 T型/十字型/斜交型 E1/E2/E3 中等破坏 DN200 E1 基本完好 E2/E3 中等破坏 ≥DN400 E1/E2/E3 基本完好 -
[1] TOSHIMA T, IWAMOTO T, NAKAJIMA T. 2000. Study on behavior of buried pipes in liquefed ground[C]//12th World Conference on Earthquake Engineering, Auckland, 2000.
[2] 李乔, 赵世春. 汶川大地震工程震害分析[M]. 成都: 西南交通大学出版社, 2008. LI Qiao, ZHAO Shichun. Analysis of Seismic Damage of Engineering Structures in Wenchuan Earthquake[M]. Chengdu: Southwest Jiaotong University Press, 2008. (in Chinese)
[3] WHAM B P, DASHTI S, FRANKE K, et al. Water supply damage caused by the 2016 Kumamoto Earthquake[J]. Lowland Technology International: The Official Journal of the International Association of Lowland Technology. 2017, 19(3): 151-160.
[4] 李杰. 生命线工程抗震: 基础理论与应用[M]. 北京: 科学出版社, 2005. LI Jie. Structural Response Network Disaster Simulation Lifeline Ground Motion Reliability[M]. Beijing: Science Press, 2005. (in Chinese)
[5] O'ROURKE T D, JEON S S, TOPRAK S, et al. Earthquake response of underground pipeline networks in Christchurch, NZ[J]. Earthquake Spectra, 2014, 30(1): 183-204. doi: 10.1193/030413EQS062M
[6] O'ROURKE M J, LIU X. Response of Buried Pipelines Subjected to Earthquake Effects[R]. La Mirada: University of Buffalo, 1999.
[7] SHIROZU T, YUNE S, ISOYAMA R, et al. Report on damage to water distribution pipes caused by the 1995 Hyogoken-Nanbu (Kobe) earthquake[J]. Terremotos, 1996: 93-110.
[8] 冯启民, 高惠瑛, 俞虹桥. 供水系统震害预测专家系统[J]. 地震工程与工程振动, 2000, 20(3): 67-75. doi: 10.3969/j.issn.1000-1301.2000.03.010 FENG Qimin, GAO Huiying, YU Hongqiao. An expert system for predicting damage to water delivery systems[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3): 67-75. (in Chinese) doi: 10.3969/j.issn.1000-1301.2000.03.010
[9] 冯启民, 高惠瑛, 张伟林. 天津开发区供水系统地震反应分析[J]. 自然灾害学报, 2000, 9(4): 39-44. doi: 10.3969/j.issn.1004-4574.2000.04.007 FENG Qimin, GAO Huiying, ZHANG Weilin. Seismic performance analysis of water delivery systems in Tianjin Economic Developed Area[J]. Journal of Natural Disasters, 2000, 9(4): 39-44. (in Chinese) doi: 10.3969/j.issn.1004-4574.2000.04.007
[10] NOURZADEH D, MORTAZAVI P, GHALANDARZADEH A, et al. Numerical, experimental and fragility analysis of urban lifelines under seismic wave propagation: study on gas distribution pipelines in the greater Tehran area[J]. Tunnelling and Underground Space Technology. 2020, 106: 103607. doi: 10.1016/j.tust.2020.103607
[11] MAKHOUL N, NAVARRO C, LEE J S, et al. A comparative study of buried pipeline fragilities using the seismic damage to the Byblos wastewater network[J]. International Journal of Disaster Risk Reduction. 2020, 51: 101775. doi: 10.1016/j.ijdrr.2020.101775
[12] 中华人民共和国建设部. 室外给水排水和燃气热力工程抗震设计规范: GB 50032—2003[S]. 北京: 中国标准出版社, 2003. Ministry of Construction of the People's Republic of China. Code for Seismic Design of Outdoor Water Supply Sewerage Gas and Heating Engineering: GB 50032—2003[S]. Beijing: Standards Press of China, 2003. (in Chinese)
[13] Ductile Iron Pipes, Fittings, Accessories and Their Joints for Water Applications: ISO 2531: 2009[S]. 2009.
[14] Japan Water Works Association JWWA. Seismic Design Specifications for Water Facilities – in Japanese[S]. 1997.
[15] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器第3部分: 设计: GB/T 150.3—2011[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Pressure Vessels—Part 3: Design: GB/T 150.3—2011[S]. Beijing: Standards Press of China, 2012. (in Chinese)
[16] American Lifelines Alliance (ALA). Seismic Guidelines for Water Pipelines[M]. ASCE, 2005.
[17] O'ROURKE M, VARGAS-LONDONO T. Analytical model for segmented pipe response to tensile ground strain[J]. Earthquake Spectra, 2016, 32(4): 2533-2548. doi: 10.1193/050415EQS064M
[18] 洪华生. 工程中的概率概念[M]. 北京: 中国建筑工业出版社, 2017. HONG Huasheng. Probability Concepts in Engineering[M]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
[19] SINGHAL A C, BENAVIDES J C. Axial and bending behavior of buried pipelin e joints[C]// Proceedings of the Fourth National Congress on Pressure Vessel and Piping Technology, American Society of Mechanical Engineers. 1983.
[20] 刘为民, 孙绍平. 管道接口的抗震试验研究[C]//第五届全国地震工程会议. 北京, 1998. LIU Wei-min, SUN Shao-ping. Shaking table test of pipe with junctions[C]// Proceeding of Fifth China Symposia on Earthquake Engineering. Beijing, 1998. (in Chinese)
[21] 周静海, 赵海艳, 魏立群. 球墨铸铁供水管线在地震作用下功能性实验分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(2): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm ZHOU Jinghai, ZHAO Haiyan, WEI Liqun. Experimental research on functionality of ductile cast iron pipelines under the earthquake[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(2): 196-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm
[22] 刘威, 黄鹭娜, 李杰. 供水管线渗漏试验研究[J]. 地震工程与工程振动, 2011, 31(4): 167-173. LIU Wei, HUANG Luna, LI Jie. Experiment on leakage of water pipelines[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(4): 167-173. (in Chinese)
[23] 傅俊. 供水管线接口变形试验与抗震可靠度研究[D]. 上海: 同济大学, 2013. FU Jun. Displacement Experiment and Seismic Reliability Study of Water Supply Pipeline Joint[D]. Shanghai: Tongji University, 2013. (in Chinese)
[24] WHAM B P, DENIS O'ROURKE T. Jointed pipeline response to large ground deformation[J]. Journal of Pipeline Systems Engineering and Practice, 2016, 7(1): 4015001- 4015009.
[25] 王颂翔. 承插式给水管道安全评价研究[D]. 大连: 大连理工大学, 2015. WANG Songxiang. Study on Safety Evaluation of Water Supply Pipelines with the Socket and Spigot Joint[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
[26] 李冠潮. 管道柔性接口轴向力学性能及功能性试验研究[D]. 郑州: 河南工业大学, 2020. LI Guanchao. Experimental Study on The Axial Mechanical Properties and Functional Properties of Flexible Joints in Pipelines[D]. Zhengzhou: Henan University of Technology, 2020. (in Chinese)
[27] 李晓晓, 钟紫蓝, 侯本伟, 等. 大型球墨铸铁管承插式接口力学性能研究[J]. 特种结构, 2020, 37(4): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG202004010.htm LI Xiaoxiao, ZHONG Zilan, HOU Benwei, et al. Study on mechanical behaviors of push-on joints of large-diameter ductile iron pipelines[J]. Special Structures, 2020, 37(4): 47-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG202004010.htm
[28] 钟紫蓝, 王书锐, 杜修力, 等. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230, 239. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm ZHONG Zilan, WANG Shurui, DU Xiuli, et al. Experimental and numerical study on axial mechanical properties of pipeline under pseudo-static loading[J]. Engineering Mechanics, 2019, 36(3): 224-230, 239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm
[29] 球墨铸铁给排水管道工程施工及验收规范技术要求: ZXB/T 0202—2013[S]. 2013. The Code for Construction and Acceptance of Water and Sewerage Ductile Iron Pipeline Works Specification Requirement: ZXB/T 0202—2013[S]. 2013. (in Chinese)
[30] Rubber Seals-Joint Rings for Water: ISO 4633—2015[S]. 2015.
[31] 范重, 张康伟, 张郁山, 等. 视波速确定方法与行波效应研究[J]. 工程力学, 2021, 38(6): 47-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106005.htm FAN Zhong, ZHANG Kangwei, ZHANG Yushan, et al. Study on apparent wave velocity calculation method and on travelling wave effect[J]. Engineering Mechanics, 2021, 38(6): 47-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106005.htm