Simplified nonlinear method for settlement of root piles in multi-layered soils
-
摘要: 根桩是一种新型桩基础,它通过从桩身预留位置将一定数量的水平根键顶入桩周土体中来提高桩基承载力。为分析多层土中根桩的非线性沉降问题,基于双曲线函数提出了土–根键的荷载传递模型,并推导建立了一种多层土中根桩的非线性沉降简化计算方法,基于MATLAB编制了根桩的非线性沉降分析程序。以安徽省池州长江公路大桥工程两根现场试桩为例,对该方法与现场荷载试验结果以及其它分析方法进行了比较。结果表明,该方法与实测结果吻合较好,较其它分析方法更符合根桩的荷载沉降曲线特性。根桩参数分析表明,根桩的荷载沉降特性对根键的布置型式以及根键侧壁土的荷载传递参数取值不敏感,但对根键底部土的荷载传递参数取值较敏感。Abstract: The root pile is a new type of pile, which improves the bearing capacity by penetrating a certain number of horizontal roots into soils from the reserved position of the piles. The load transfer model for the roots of a root pile is proposed based on the hyperbolic function, and a simplified nonlinear method for settlement of the root piles in multilayered soils is derived. An effective computer program based on MATLAB is developed for nonlinearly analyzing the load-settlement behavior of the root piles. The comparisons among the proposed method, other analytical methods and the root pile load test results on sites are carried out in terms of two real case root piles in Chizhou Yangtze River Highway Bridge in Anhui Province, China. It is demonstrated that the proposed method can achieve a good agreement with the measured results, and the load-settlement curve calculated by this method is more consistent with the real load-settlement characteristics of the root piles compared with that of the other analysis methods. The parameter study of the root piles shows that the load-settlement behavior of the root piles is not sensitive to the layout of roots and the load transfer parameters selected at root side-soil interface, but sensitive to the load transfer parameters selected at root base-soil interface.
-
-
表 1 基础形状系数
Table 1 Geometrical coefficients of foundation
形状系数 圆形 L/B 1 1.5 2 3 4 5 ω 0.79 0.88 1.08 1.22 1.44 1.61 1.72 表 2 系数C1,C2,C3
Table 2 Coefficients C1, C2 and C3
内摩擦角/(°) C1(砂土) C1(黏土) C2 C3 2 0.07 0.04 1.20 5.63 4 0.16 0.09 1.43 6.19 6 0.28 0.16 1.72 6.81 8 0.44 0.25 2.06 7.53 10 0.64 0.36 2.47 8.35 12 0.87 0.50 2.97 9.29 14 1.26 0.69 3.59 10.37 16 1.73 0.95 4.34 11.63 18 2.33 1.27 5.26 13.10 20 3.14 1.70 6.40 14.84 22 4.22 2.26 7.82 16.88 24 5.70 3.01 9.60 19.32 26 7.70 4.07 11.85 22.25 28 10.16 5.38 14.72 25.80 30 14.26 7.32 18.40 30.14 32 19.51 9.90 23.18 35.49 34 27.27 13.83 29.44 42.17 36 37.32 18.92 37.75 50.59 38 54.75 27.10 48.93 61.35 40 77.85 38.20 64.20 75.31 表 3 工程场地土层参数
Table 3 Soil layers and parameters for real case soils
土层 厚度/m c/kPa φ/(°) μ γ/(kg·m-3) E0/MPa 粉质黏土 4.25 13.2 5.9 0.42 1860 4.36 淤泥质粉质黏土 5.60 13.8 6.7 0.42 1980 3.66 粉细砂 30.00 7.0 30.0 0.3 2000 31.00 中粗砂 3.40 5.0 33.0 0.25 2000 36.00 卵石土 4.30 1.0 36.0 0.24 2150 60.00 圆砾土 7.50 1.0 38.0 0.23 2150 61.00 中风化泥质粉砂岩 — 50.0 25.0 0.35 2450 300.00 表 4 虚拟桩结构型式
Table 4 Structural types of fictitious piles
桩体布置型式 根键数量 根键层数 每层根键数量 根键层间距/m 顶层根键距桩顶/m 根键几何尺寸/m 无根键圆桩 0 0 0 — — — 无根键圆桩(1.4D) 0 0 0 — — — 根桩型式A 40 10 4 1 6 0.35×0.16×0.16 根桩型式B 40 5 8 2 6 0.35×0.16×0.16 根桩型式C 40 5 8 1 2 0.35×0.16×0.16 根桩型式D 40 5 8 1 9 0.35×0.16×0.16 表 5 虚拟桩的荷载传递参数
Table 5 Load transfer parameters of fictitious piles
1/as/(MN·m-3) 1/bs/MPa 1/ab/(MN·m-3) 1/bb/MPa 1/ar/(MN·m-3) 1/br/MPa 1/av/(MN·m-3) 1/bv/MPa 86.96 0.05 57.47 7.46 86.96 0.05 111.73 4.50 -
[1] 孔纲强, 周航. 扩底楔形桩沉桩挤土效应理论分析[J]. 中国公路学报, 2014, 27(2): 9–16. doi: 10.3969/j.issn.1001-7372.2014.02.002 KONG Gang-qiang, ZHOU Hang. Theoretical analysis of soil compaction effect of belled wedge pile[J]. China Journal of Highway and Transport, 2014, 27(2): 9–16. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.02.002
[2] 王伊丽, 徐良英, 李碧青, 等. 挤扩支盘桩竖向承载力特性和影响因素的数值研究[J]. 土木工程学报, 2015, 48(增刊2): 158–162. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm WANG Yi-li, XU Liang-ying, LI Bi-qing, et al. Finite element numerical study on the axial bearing behaviors and factors of squeezed branch pile[J]. China Civil Engineering Journal, 2015, 48(S2): 158–162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2029.htm
[3] 周佳锦, 龚晓南, 王奎华, 等. 静钻根植竹节桩抗拔承载性能试验研究[J]. 岩土工程学报, 2015, 37(3): 570–576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503028.htm ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al. Behavior of the static drill rooted nodular piles under tension[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 570–576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503028.htm
[4] 龚维明, 胡丰, 童小东, 等. 根式基础竖向承载性能的试验研究[J]. 岩土工程学报, 2008, 30(12): 1789–1795. doi: 10.3321/j.issn:1000-4548.2008.12.004 GONG Wei-ming, HU Feng, TONG Xiao-dong, et al. Experimental study on vertical bearing capacity of root foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1789–1795. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.12.004
[5] 殷永高, 孙敦华, 龚维明. 根式基础承载特性的试验与数值模拟研究[J]. 土木工程学报, 2009, 42(12): 162–169. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200912026.htm YIN Yong-gao, SUN Dun-hua, GONG Wei-ming. Experiment and numerical simulation of the bearing characteristics of root foundations[J]. China Civil Engineering Journal, 2009, 42(12): 162–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200912026.htm
[6] 杨光武, 黄茂松, 张陈蓉. 根式沉井基础力学分析与施工工艺[J]. 桥梁建设, 2011, 41(2): 50–54. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201102012.htm YANG Guang-wu, HUANG Mao-song, ZHANG Chen-rong. Mechanical analysis and construction technology of root type caisson foundations[J]. Bridge Construction, 2011, 41(2): 50–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201102012.htm
[7] 龚维明, 王磊, 殷永高. 厚覆盖土层地区根式基础应用与试验研究[J]. 土木工程学报, 2015, 48(增刊2): 69–74. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2013.htm GONG Wei-ming, WANG Lei, YIN Yong-gao. Applied and experimental study on the root foundation in the thick covering stratum region[J]. China Civil Engineering Journal, 2015, 48(S2): 69–74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2013.htm
[8] 余竹, 殷永高, 杜宪亭. 池州长江公路大桥根式基础承载力试验研究[J]. 桥梁建设, 2019, 49(4): 13–17. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201904003.htm YU Zhu, YIN Yong-gao, DU Xian-ting. Experimental study of bearing capacity of rooted foundation for Chizhou Changjiang river highway bridge[J]. Bridge Construction, 2019, 49(4): 13–17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201904003.htm
[9] RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division, 1978, 104(12): 1465–1488. doi: 10.1061/AJGEB6.0000729
[10] GUO W D, RANDOLPH M F. Rationality of load transfer approach for pile analysis[J]. Computers and Geotechnics, 1998, 23(1/2): 85–112.
[11] SHENG D C, EIGENBROD K D, WRIGGERS P. Finite element analysis of pile installation using large-slip frictional contact[J]. Computers and Geotechnics, 2005, 32(1): 17–26. doi: 10.1016/j.compgeo.2004.10.004
[12] COMODROMOS E M, PAPADOPOULOU M C, RENTZEPERIS I K. Pile foundation analysis and design using experimental data and 3-D numerical analysis[J]. Computers and Geotechnics, 2009, 36(5): 819–836. doi: 10.1016/j.compgeo.2009.01.011
[13] POULOS H G, DAVIS E H. Pile Foundation Analysis and Design [M]. New York: John Wiley and Sons; 1980.
[14] SEED H B, REESE L C. The action of soft clay along friction piles[J]. Transactions of the American Society of Civil Engineers, 1957, 122(1): 731–754. doi: 10.1061/TACEAT.0007501
[15] 肖宏彬. 竖向荷载作用下大直径桩的荷载传递理论及应用研究[D]. 长沙: 中南大学, 2005. XIAO Hong-bin. Theoretical and Application Research on Load Transfer of Vertically Loading Large Diameter Piles[D]. Changsha: Central South University, 2005. (in Chinese)
[16] 黄明, 江松, 许德祥, 等. 超大直径变截面空心桩的荷载传递特征与理论模型[J]. 岩石力学与工程学报, 2018, 37(10): 2370–2383. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810017.htm HUANG Ming, JIANG Song, XU De-xiang, et al. Load transfer mechanism and theoretical model of step tapered hollow pile with huge diameter[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2370–2383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810017.htm
[17] WANG Z J, XIE X Y, WANG J C. A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils[J]. Computers and Geotechnics, 2012, 45: 118–126.
[18] 胡丰, 龚维明, 童小东, 等. 含受弯根键的根式沉井承载性能分析[J]. 计算力学学报, 2010, 27(3): 505–510. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201003022.htm HU Feng, GONG Wei-ming, TONG Xiao-dong, et al. Analysis of bearing capacity of root-caisson with flexual roots[J]. Chinese Journal of Computational Mechanics, 2010, 27(3): 505–510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201003022.htm
[19] HUANG M S, ZHANG C R, MU L L, et al. Analysis of anchor foundation with root caissons loaded in nonhomogeneous soils[J]. Canadian Geotechnical Journal, 2011, 48(2): 234–246.
[20] BAGUELIN F, FRANK R. Theoretical studies of piles using the finite element method[J]. Numerical Methods in Offshore Piling, 1980, 11: 83–91.
[21] RANDOLPH M F, CARTER J P, WROTH C P. Driven piles in clay—the effects of installation and subsequent consolidation[J]. Géotechnique, 1979, 29(4): 361–393.
[22] 杨光华. 地基沉降计算的新方法[J]. 岩石力学与工程学报, 2008, 27(4): 679–686. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804007.htm YANG Guang-hua. New computation method for soil foundation settlements[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 679–686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804007.htm
[23] 陆培炎, 徐振华. 地基的强度与变形的计算[M]. 西宁: 青海人民出版社, 1978. LU Pei-yan, XU Zhen-hua. Calculation of Strength and Deformation of Foundation[M]. Xining: Qinghai People's Press, 1978. (in Chinese)
[24] 南京东大自平衡桩基检测有限公司. 池州长江公路大桥南岸试桩工程试验报告[R]. 南京: 南京东大自平衡桩基检测有限公司, 2015. Nanjing Dongda Self-balancing Pile Testing Co Ltd. Test Report on the Test Pile of the South Bank of Chizhou Yangtze River Highway Bridge[R]. Nanjing: Nanjing Dongda Self-balancing Pile Testing Co Ltd, 2015. (in Chinese)