Modeling sub-surface velocity structures of regional sites
-
摘要: 近地表速度结构是全面考虑城市区域场地地震效应,精细模拟地震动场及建筑群震害的基础。针对复杂交错沉积的区域场地,建立了先基于工程地质先验信息限定交错土体边界,利用序贯指示模拟求解各类交错土体空间概率分布,再依据剪切波速与工程地质结构的空间相关关系,借助序贯高斯模拟构建波速结构模型的方法;在搜集分析钻孔波速资料基础上,构建了哈尔滨市区场地三维速度结构模型;通过与工程地质剖面的定性对比分析、剪切波速-埋深统计关系和实测波速的定量比较,验证了方法的可行性。结果表明:构建的三维工程地质模型具有空间预测能力,能够反映区域场地工程地质结构特征,构建的剪切波速结构模型与工程地质结构有很好的相关性,适用于模拟随深度减小剪切波速增大的复杂场地结构。本文模型更利于根据详细岩土类型给定地震反应分析中的非线性动力学参数。Abstract: The sub-surface shear wave velocity structure of regional sites provides an important basis for the comprehensive consideration of the site seismic effects in the fine simulation of urban ground motion fields and seismic damages of building groups. In this study, a method is proposed to establish the complex staggered sedimentary structure of regional sites. First, the boundary of the staggered soils is confined based on the available information of engineering geology, then the spatial probability distribution of interlaced soils is solved by the sequential indicator simulation method, and then the velocity structure is modeled based on the spatial correlation between shear wave velocity and engineering geological structure quantified by the sequential Gaussian simulation method. Accordingly, the three-dimensional (3D) velocity structure of Harbin urban site is modeled based on the borehole soil information and shear wave velocity data. The feasibility of this method is verified through the qualitative analysis of consistence with engineering geological sections and the quantitative comparison with velocity structures tested in boreholes and estimated by the experimental relation between velocity and depth. The results demonstrate that the 3D model makes a good spatial prediction of engineering geological structure and reflects well on the structure characteristics of regional sites. The shear wave velocity structure of the proposed model shows a good correlation with the engineering geological structure, and even the velocity decreases with the increasing depth. Furthermore, in seismic response analysis, the proposed model is far more conducive to specifying the nonlinear dynamic parameters according to the detailed rock and soil types.
-
-
表 1 研究区覆盖土层剪切波速分布
Table 1 Shear wave velocity distribution of overlying soils in study area
土层类别 样本个数
/个剪切波速/(m·s-1) 深度/m 填土 242 74~220 0.3~14 碎石土及砂土 3209 97~599 0.5~82.6 细粒土 2289 102~538 1~78 含淤泥质粉质黏土 25 105~443 3~56 岩体 439 357~609 12~93 -
[1] 孙柏涛. 城市震害三维模拟系统的实现方法[J]. 地震工程与工程振动, 2010, 30(5): 1–8. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201005001.htm SUN Bai-tao. The implementation of three-dimensional seismic damage simulation system[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(5): 1–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201005001.htm
[2] 许镇, 陆新征, 韩博, 等. 城市区域建筑震害高真实度模拟[J]. 土木工程学报, 2014, 47(7): 46–52. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201407009.htm XU Zhen, LU Xin-zheng, HAN Bo, et al. Realistic simulation for seismic damages of buildings in an urban area[J]. China Civil Engineering Journal, 2014, 47(7): 46–52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201407009.htm
[3] 熊琛. 基于时程分析和三维场景可视化的区域建筑震害模拟研究[D]. 北京: 清华大学, 2016. XIONG Chen. Study on the Regional Building Seismic Damage Simulation Based on Time-history Analysis and 3D Scene Visualiztion[D]. Beijing: Tsinghua University. 2016. (in Chinese)
[4] 刘启方, 于彦彦, 章旭斌. 施甸盆地三维地震动研究[J]. 地震工程与工程振动, 2013, 33(4): 54–60. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304007.htm LIU Qi-fang, YU Yan-yan, ZHANG Xu-bin. Three-dimensional ground motion simulation for Shidian Basin[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(4): 54–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304007.htm
[5] 陈少林, 张娇, 郭琪超, 等. 非水平成层场地上核电结构时域土–结相互作用分析[J]. 岩土工程学报, 2020, 42(2): 308–316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002017.htm CHEN Shao-lin, ZHANG Jiao, GUO Qi-chao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308–316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002017.htm
[6] 梁建文, 吴孟桃, 巴振宁. 软硬交互横向不均匀场地地震反应分析[J]. 岩土工程学报, 2019, 41(9): 1599–1608. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909004.htm LIANG Jian-wen, WU Meng-tao, BA Zhen-ning. Seismic response analysis of lateral uneven sites with soft-hard connected media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1599–1608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909004.htm
[7] 景立平, 卓旭炀, 王祥建. 复杂介质对地震波传播的影响[J]. 岩土工程学报, 2005, 27(4): 393–397. doi: 10.3321/j.issn:1000-4548.2005.04.006 JING Li-ping, ZHUO Xu-yang, WANG Xiang-jian. The effect of complex media on seismic wave propagation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 393–397. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.04.006
[8] GUO J T, WANG X L, WANG J M, et al. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 2021, 284: 106047. doi: 10.1016/j.enggeo.2021.106047
[9] KENT D V, OLSEN P E. Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients[J]. Earth and Planetary Science Letters, 2000, 179(2): 311–324. doi: 10.1016/S0012-821X(00)00117-5
[10] 赵伯明. 广州地区三维地下速度结构模型建立及优化研究[J]. 华南地震, 2008, 28(4): 45–52. doi: 10.3969/j.issn.1001-8662.2008.04.006 ZHAO Bo-ming. Modeling of 3D underground velocity structure in Guangzhou[J]. South China Journal of Seismology, 2008, 28(4): 45–52. (in Chinese) doi: 10.3969/j.issn.1001-8662.2008.04.006
[11] 刘启方, 李雪强. 唐山大地震近场宽频带地震动模拟[J]. 地震工程与工程振动, 2011, 31(5): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201105002.htm LIU Qi-fang, LI Xue-qiang. Broad-band strong motion simulation of the great Tangshan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(5): 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201105002.htm
[12] 张振, 陈学良, 高孟潭, 等. 玉溪盆地三维速度结构建模[J]. 地震学报, 2017, 39(6): 930–940, 976. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201706011.htm ZHANG Zhen, CHEN Xue-liang, GAO Meng-tan, et al. 3-D modeling of velocity structure for the Yuxi basin[J]. Acta Seismologica Sinica, 2017, 39(6): 930–940, 976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201706011.htm
[13] CHEN G X, ZHU J, QIANG M Y, et al. Three-dimensional site characterization with borehole data: a case study of Suzhou area[J]. Engineering Geology, 2018, 234: 65–82. doi: 10.1016/j.enggeo.2017.12.019
[14] 师黎静. 基于地脉动的近地表三维速度结构探测和建模成像[D]. 哈尔滨: 中国地震局工程力学研究所, 2007. (SHI Li-jing. Exploration and Imaging of 3D Subsurface Velocity Structure by Microtremors[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2007. (in Chinese
[15] 师黎静, 苏茜, 刘宇实, 等. 厦门本岛近地表三维速度结构建模研究[J]. 振动与冲击, 2016, 35(16): 43–48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201616008.htm SHI Li-jing, SU Xi, LIU Yu-shi, et al. A study on imaging the near-surface 3D wave velocities structure in the Xiamen Island[J]. Journal of Vibration and Shock, 2016, 35(16): 43–48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201616008.htm
[16] DESBARATS A. Stochastic modeling and geostatistics: Principles, methods and case studies AAPG computer applications in geology No3[J]. Computers & Geosciences, 1996, 22(8): 951–952.
[17] DEUTSCHC V, JOURNELA G. GSLIB: Geostatistical Software Library and User's Guide[M]. New York: Oxford University Press, 1992. [18] 马秋石, 陈建国, 张波, 等. 序贯高斯模拟在西藏尼木岗讲矿区的应用研究[J]. 地质学刊, 2013, 37(3): 482–488. doi: 10.3969/j.issn.1674-3636.2013.03.482 MA Qiu-shi, CHEN Jian-guo, ZHANG Bo, et al. Application study on sequential gauss simulation in Gangjiang Copper-polymetallic Mine in Nimu County of Tibet[J]. Journal of Geology, 2013, 37(3): 482–488. (in Chinese) doi: 10.3969/j.issn.1674-3636.2013.03.482
[19] 刘占宁, 宋宇辰, 孟海东, 等. 序贯高斯模拟在矿石品位估计中的应用研究[J]. 地质找矿论丛, 2018, 33(1): 149–155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201801021.htm LIU Zhan-ning, SONG Yu-chen, MENG Hai-dong, et al. Application of sequential Gaussian simulation in ore grade estimation[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 149–155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201801021.htm
[20] 乐友喜, 曾勉, 问雪, 等. 利用序贯高斯随机模拟分析构造图的不确定性[J]. 石油地球物理勘探, 2017, 52(2): 333–339, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702018.htm YUE You-xi, ZENG Mian, WEN Xue, et al. Structure uncertainty analysis based on sequential Gaussian stochastic simulation[J]. Oil Geophysical Prospecting, 2017, 52(2): 333–339, 196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702018.htm
[21] 李迪, 胡乃联, 李国清, 等. 基于序贯高斯模拟的储量估算分层更新技术[J]. 中国矿业, 2014, 23(3): 130–135. doi: 10.3969/j.issn.1004-4051.2014.03.033 LI Di, HU Nai-lian, LI Guo-qing, et al. Reserves estimation on hierarchical update technique based on the Sequential Gaussian Simulation[J]. China Mining Magazine, 2014, 23(3): 130–135. (in Chinese) doi: 10.3969/j.issn.1004-4051.2014.03.033
[22] 宋健, 师黎静, 党鹏飞, 等. 哈尔滨市剪切波速与埋深相关性分析[J]. 建筑结构, 2020, 50(增刊1): 1088–1092. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1212.htm SONG Jian, SHI Li-jing, DANG Peng-fei, et al. Correlation analysis of shear wave velocity and depth in Harbin[J]. Building Structure, 2020, 50(S1): 1088–1092. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1212.htm