Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑热效应的污染物在土中扩散、渗透和固结耦合模型

田改垒, 张志红

田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. DOI: 10.11779/CJGE202202009
引用本文: 田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. DOI: 10.11779/CJGE202202009
TIAN Gai-lei, ZHANG Zhi-hong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. DOI: 10.11779/CJGE202202009
Citation: TIAN Gai-lei, ZHANG Zhi-hong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. DOI: 10.11779/CJGE202202009

考虑热效应的污染物在土中扩散、渗透和固结耦合模型  English Version

基金项目: 

国家自然科学基金面上项目 51678012

详细信息
    作者简介:

    田改垒(1990—),女,博士,主要从事环境岩土工程研究。E-mail: bjuttian@163.com

    通讯作者:

    张志红,E-mail: zhangzh2002@bjut.edu.cn

  • 中图分类号: TU431

Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects

  • 摘要: 为探究温度对污染物运移进程的影响,建立了考虑热效应的污染物在土中扩散、渗透和固结耦合模型,该模型不仅能够体现污染物运移过程中土体物理特性及输运性质的动态变化,同时实现了扩散、渗透和固结机制的耦合。在验证模型有效性的基础上,分析了热扩散、热渗透、热固结及其综合效应对污染物运移规律的影响。结果表明:热扩散、热渗透能够显著加快污染物运移,且随着索雷特系数和热渗透系数的增大,热扩散和热渗透效应对污染物运移的促进作用增强。而热固结效应则能够减缓污染物运移,但随着土体热膨胀系数的增加,垫层底部污染物积累质量浓度变化不大。当温差为40 K时,与不考虑热效应工况相比,考虑热扩散、热渗透和热固结综合效应影响下的污染物击穿时间缩短54 a。
    Abstract: To explore the influences of temperature on pollutant transport, a coupled model for contaminant diffusion in soils, osmosis and consolidation considering the thermal effects is proposed to reflect the dynamic changes of physical properties of soils and transport properties in the process of pollutant transport and realize the coupling of diffusion, osmosis and consolidation. On the basis of verifying the validity of the model, the effects of thermal diffusion, thermo-osmosis, thermal consolidation and their combined effect on pollutant transport are analyzed. The simulated results show that the thermal diffusion and thermo-osmosis can accelerate contaminant transport, and with the increase of Soret coefficient and thermal permeability, the thermal diffusion and thermo-osmosis effects enhance. However, the thermal consolidation can slow down the pollutant transport rate, but with the increase of expansion coefficient of soils, the accumulation concentration of pollutant at the bottom of clay layer has little change. When the temperature difference is 40 K, the breakthrough time with considering the combined effects of thermal diffusion, thermo-osmosis and thermal consolidation can be shortened by 53.97 years compared with the results without considering the thermal effects.
  • 图  1   不同温差条件下溶质质量浓度积累对比结果

    Figure  1.   Comparison of solute concentration accumulation under different temperature differences

    图  2   不同索雷特系数条件下溶质质量浓度积累对比结果

    Figure  2.   Comparison of solute concentration accumulation under different Soret coefficients

    图  3   Neumann边界条件下溶质质量浓度分布对比结果

    Figure  3.   Comparison of solute concentration distribution under Neumann boundary conditions

    图  4   Dirichle边界条件下溶质质量浓度分布对比结果

    Figure  4.   Comparison of solute concentration distribution under Dirichle boundary conditions

    图  5   Cd2+质量质量浓度随深度变化曲线

    Figure  5.   Distribution of Cd2+ concentrations with depth

    图  6   Zn2+质量浓度随深度变化曲线

    Figure  6.   Distribution of Zn2+ concentrations with depth

    图  7   热扩散效应对污染物质量浓度随深度变化影响

    Figure  7.   Influences of thermal diffusion on variation of contaminant concentration with depth

    图  8   热扩散效应对污染物积累质量浓度随时间变化规律影响

    Figure  8.   Influences of thermal diffusion on variation of contaminant accumulation concentration with time

    图  9   热渗透效应对污染物质量浓度随深度变化影响

    Figure  9.   Influences of thermo-osmosis on variation of contaminant concentration with depth

    图  10   热渗透效应对污染物积累质量浓度随时间变化影响

    Figure  10.   Influences of thermo-osmosis on variation of contaminant accumulation concentration with time

    图  11   热固结效应对污染物质量浓度随深度变化影响

    Figure  11.   Influences of thermal consolidation on variation of contaminant concentration with depth

    图  12   热固结效应对污染物积累质量浓度随时间变化影响

    Figure  12.   Influences of thermal consolidation on variation of contaminant accumulation concentration with time

    图  13   热效应对污染物质量浓度随深度变化影响

    Figure  13.   Influences of thermal effect on variation of contaminant concentration with depth

    图  14   热效应对污染物积累质量浓度随时间变化影响

    Figure  14.   Influences of thermal effect on contaminant accumulation concentration with time

    图  15   索雷特系数变化对污染物积累质量浓度影响

    Figure  15.   Influences of variation of Soret coefficient on contaminant accumulation concentration

    图  16   热渗透系数变化对污染物积累质量浓度影响

    Figure  16.   Influences of variation of coefficient of thermo-osmosis on contaminant accumulation concentration

    图  17   土体热膨胀系数变化对污染物积累质量浓度影响

    Figure  17.   Influences of variation of coefficient of thermal expansion of soil on contaminant accumulation concentration

    表  1   模型参数

    Table  1   Model parameters

    初始孔隙率n0 扩散系数
    D0
    索雷特系数ST 分配系数
    Rd
    0.5 2.8×10-10 m2/s 0.03K-1 1
    注:参数取值与文献[6]相同。
    下载: 导出CSV

    表  2   模型参数

    Table  2   Model parameters

    初始孔隙率n0 扩散系数
    D0
    索雷特系数ST 分配系数
    Rd
    0.5 1×10-10 m2·s-1 0.01K-1 1
    注:参数取值与文献[30]相同。
    下载: 导出CSV

    表  3   模型参数

    Table  3   Model parameters

    扩散系数
    D0/(10-11 m2·s-1)
    初始孔隙率n0 摩尔质量/(kg·m-3)
    Zn2+ Cd2+
    1.15,4.05 0.43 0.065 0.112
    注:参数取值与文献[31]相同。
    下载: 导出CSV

    表  4   模型参数

    Table  4   Model parameters

    参数 取值
    自由水体分子扩散系数D0 5×10-10 m2·s-1
    初始渗透系数k0 1×10-10 m·s-1
    泊松比ν 0.3
    弹性模量E 1.49×10-10 Pa-1
    化学渗透效率系数ω 0.005
    初始孔隙率n0 0.5
    吸附系数kd 0.814×10-3 m3
    荷载引起的体变系数mv 5×10-7 m·s2·kg-1
    质量浓度引起的体变系数mc 0.105×10-7 m-1·s2·kg-1
    索雷特系数ST 0.033 K-1
    热渗透系数kT 3.14×10-12 m·K·s-1
    土体热膨胀系数α 2×10-4 K-1
    流体压缩系数βT 4.5×10-10 Pa-1
    流体热膨胀系数βTf 3.5×10-4 K-1
    固体土颗粒比热容Cps 732 J·kg-1·K-1
    孔隙流体比热容Cpf 4186 J·kg-1·K-1
    土体固有热传导系数λT 1.69 W·m-1·K-1
    水力梯度i 3
    下载: 导出CSV
  • [1] 陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    CHEN Yun-min, XIE Hai-jian, ZHANG Chun-hua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    [2]

    RAMREDDY C, MURTHY P V S N, CHAMKHA A J, et al. Soret effect on mixed convection flow in a nanofluid under convective boundary condition[J]. International Journal of Heat and Mass Transfer, 2013, 64: 384–392. doi: 10.1016/j.ijheatmasstransfer.2013.04.032

    [3] 张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.

    ZHANG Chun-hua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)

    [4]

    ROSANNE R, PASZKUTA M, TEVISSEN E, et al. Thermodiffusion in compact clays[J]. Journal of Colloid and Interface Science, 2003, 267(1): 194–203. doi: 10.1016/S0021-9797(03)00670-2

    [5]

    ROSANNE M, PASZKUTA M, ADLER P M. Thermodiffusional transport of electrolytes in compact clays[J]. Journal of Colloid and Interface Science, 2006, 299(2): 797–805. doi: 10.1016/j.jcis.2006.03.002

    [6]

    XIE H J, ZHANG C H, SEDIGHI M, et al. An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media[J]. Computers and Geotechnics, 2015, 69: 329–337. doi: 10.1016/j.compgeo.2015.06.012

    [7] 吴珣, 施建勇, 何俊. 非等温条件下有机污染物在黏土衬垫中的扩散分析[J]. 水文地质工程地质, 2014, 41(3): 120–124. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm

    WU Xun, SHI Jian-yong, HE Jun. An analysis of organic contaminant diffusion through clay liner under the condition of transient temperature[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 120–124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm

    [8] 何俊, 颜兴, 胡晓瑾, 等. 考虑热扩散的黏土衬垫中污染物运移简化计算[J]. 工程地质学报, 2018, 26(2): 400–406. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802015.htm

    HE Jun, YAN Xing, HU Xiao-jin, et al. Simplified calculation method for contaminant transport in compacted clay liner considering thermal diffusion[J]. Journal of Engineering Geology, 2018, 26(2): 400–406. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802015.htm

    [9]

    ROSHAN H, ANDERSEN M S, ACWORTH R I. Effect of solid-fluid thermal expansion on thermo-osmotic tests: an experimental and analytical study[J]. Journal of Petroleum Science and Engineering, 2015, 126: 222–230. doi: 10.1016/j.petrol.2014.12.005

    [10]

    GONÇALVÈS J, TRÉMOSA J. Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights[J]. Journal of Colloid and Interface Science, 2010, 342(1): 166–174. doi: 10.1016/j.jcis.2009.09.056

    [11]

    GONCALVES J, JI Y C, MATRAY J M, et al. Analytical expressions for thermo-osmotic permeability of clays[J]. Geophysical Research Letters 2018, 45(2): 691–698. doi: 10.1002/2017GL075904

    [12]

    YANG Y, GUERLEBECK K, SCHANZ T. Thermo-osmosis effect in saturated porous medium[J]. Transport in Porous Media, 2014, 104(2): 253–271. doi: 10.1007/s11242-014-0332-5

    [13]

    ZAGORŠČAK R, SEDIGHI M, THOMAS H R. Effects of thermo-osmosis on hydraulic behavior of saturated clays[J]. International Journal of Geomechanics, 2017, 17(3): 04016068. doi: 10.1061/(ASCE)GM.1943-5622.0000742

    [14]

    ZAGORSCAK R, Thomas H R. Thermo-osmosis in saturated shale[C]// ACME-UK: Conference on Computational Mechanics. ACM, 2016.

    [15]

    PAASWELL R E. Temperature effects on clay soil consolidation[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(3): 9–22. doi: 10.1061/JSFEAQ.0000982

    [16]

    JOSHAGHANI M, GHASEMI-FARE O. A study on thermal consolidation of fine grained soils using modified consolidometer[C]// Eighth International Conference on Case Histories in Geotechnical Engineering. March 24–27, 2019, Philadelphia, Pennsylvania. Reston, VA, USA: American Society of Civil Engineers, 2019: 148–156.

    [17]

    HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14–34.

    [18]

    MITCHELL J K, KAO T C. Measurement of soil thermal resistivity[J]. Journal of the Geotechnical Engineering Division, 1978, 104(10): 1307–1320. doi: 10.1061/AJGEB6.0000706

    [19] 白冰. 岩土颗粒介质非等温—维热固结特性研究[J]. 工程力学, 2005, 22(5): 186–191. doi: 10.3969/j.issn.1000-4750.2005.05.034

    BAI Bing. One- dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering Mechanics, 2005, 22(5): 186–191. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.05.034

    [20]

    DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343–354. doi: 10.1139/t99-105

    [21]

    SANAVIA L, BONIFETTO G, LALOUI L. Thermo-elasto- plastic consolidation analysis with water phase change[C]// Fifth Biot Conference on Poromechanics. 2013, Vienna, Austria. Reston, VA, USA: American Society of Civil Engineers, 2013.

    [22] 钮家军, 凌道盛, 王秀凯, 等. 饱和单层土体一维热固结精确解[J]. 岩土工程学报, 2019, 41(9): 1715–1723. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909018.htm

    NIU Jia-jun, LING Dao-sheng, WANG Xiu-kai, et al. Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1715–1723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909018.htm

    [23] 孙德安, 薛垚, 汪磊. 变荷载作用下考虑半透水边界热传导性的一维饱和土热固结特性研究[J]. 岩土力学, 2020(5): 1465–1473. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005002.htm

    (SUN De-an, XUE Yao, WANG Lei. Analysis of one-dimensional thermal consolidation of saturated soil considering heat conduction of semi-permeable drainage boundary under varying loading[J]. Rock and Soil Mechanics, 2020(5): 1465–1473. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005002.htm

    [24]

    PETERS G P, SMITH D W. The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5/6): 467–486.

    [25]

    FRANÇOIS B, LALOUI L, LAURENT C. Thermo-hydro- mechanical simulation of ATLAS in situ large scale test in Boom Clay[J]. Computers and Geotechnics, 2009, 36(4): 626–640. doi: 10.1016/j.compgeo.2008.09.004

    [26]

    HART R D, ST JOHN C M. Formulation of a fully-coupled thermal—mechanical—fluid flow model for non-linear geologic systems[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 213–224.

    [27]

    THOMAS H R, HE Y. A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation[J]. International Journal for Numerical Methods in Engineering, 1997, 40(18): 3421–3441. doi: 10.1002/(SICI)1097-0207(19970930)40:18<3421::AID-NME220>3.0.CO;2-C

    [28]

    MALUSIS M A, KANG J B, SHACKELFORD C D. Restricted salt diffusion in a geosynthetic clay liner[J]. Environmental Geotechnics, 2015, 2(2): 68–77. doi: 10.1680/envgeo.13.00080

    [29] 张志红, 韩林, 田改垒. 饱和土体热–水–力–化全耦合一维溶质运移模型[J]. 东南大学学报(自然科学版), 2019, 49(6): 1178–1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm

    ZHANG Zhi-hong, HAN Lin, TIAN Gai-lei. One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1178–1186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm

    [30]

    YAN H X, SEDIGHI M, XIE H J. Thermally induced diffusion of chemicals under steady-state heat transfer in saturated porous media[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119664. doi: 10.1016/j.ijheatmasstransfer.2020.119664

    [31]

    DO N Y, LEE S R. Temperature effect on migration of Zn and Cd through natural clay[J]. Environmental Monitoring and Assessment, 2006, 118(1/2/3): 267–291.

    [32] 吴瑞潜. 饱和土一维热固结解析理论研究[D]. 杭州: 浙江大学, 2008.

    WU Rui-qian. Analytical Study on One-Dimensional Thermal Consolidation Theory of Saturated Soil[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)

    [33]

    HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952–2971. doi: 10.1002/nag.2170

    [34] 张文杰, 陈云敏, 詹良通. 垃圾填埋场渗滤液穿过垂直防渗帷幕的渗漏分析[J]. 环境科学学报, 2008, 28(5): 925–929. doi: 10.3321/j.issn:0253-2468.2008.05.018

    ZHANG Wen-jie, CHEN Yun-min, ZHAN Liang-tong. Transport of leachate through vertical curtain grouting in landfills[J]. Acta Scientiae Circumstantiae, 2008, 28(5): 925–929. (in Chinese) doi: 10.3321/j.issn:0253-2468.2008.05.018

图(17)  /  表(4)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  58
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-01-31

目录

    /

    返回文章
    返回