Thermal effects and infrared detection method for shallow reinforcement corrosion in tunnel linings under natural conditions
-
摘要: 隧道随着服役年限增加,衬砌渗漏水、开裂等病害已成常态,由此造成的钢筋锈蚀逐渐显现,钢筋锈蚀一定程度后将引起衬砌剥离剥落,因此,及时发现钢筋锈蚀程度及位置尤为重要。通过室内试验和数值模拟研究了自然温差条件下钢筋锈蚀衬砌的热传导规律,分析了衬砌内外温差、钢筋锈蚀程度对衬砌内表面温度分布的影响规律,探索了红外热成像技术检测衬砌浅层钢筋锈蚀的可行性和适用条件。结果表明:①衬砌内外温差1.0℃~11.9℃时红外检测具有可行性,冬季时衬砌内外温差可满足条件;钢筋锈蚀率为6.51%,19.02%和23.16%时红外检测所需的最小温差为3.8℃,1.8℃和1.4℃。②衬砌钢筋锈蚀率(ρ)与二次衬砌内表面温差(T1)、二次衬砌内外温差(T2)的关系式为ρ=1.1×105T−3.22T31+503.7T−0.92T1。衬砌内外温差为3~30℃时可检测的钢筋锈蚀率为9.78%~1.18%。③通过衬砌内外温差而产生的热传导效应,依据衬砌内表面温度分布可以综合判断钢筋锈蚀位置与锈蚀程度,为隧道衬砌浅层钢筋锈蚀提供了新的快速检测方法。Abstract: With the increase of the service life of the tunnel, the diseases such as water leakage and cracking of the linings have become normal, and the induced reinforcement corrosion gradually emerges. After the reinforcement corrosion to a certain extent, the linings will peel off. Therefore, it is particularly important to discover the corrosion degree and position of reinforcement in time. The heat conduction laws of reinforcement corrosion of the linings under the natural temperature difference are studied through the laboratory tests and numerical simulations, the influence laws of temperature difference inside and outside the linings and the degree of reinforcement corrosion on the inner surface temperature distribution of the linings are analyzed, and the feasibility and applicable conditions of infrared thermography technology for detecting the corrosion of the shallow reinforcement corrosion of the linings are explored. The results show that: (1) The infrared detection is feasible when the temperature difference inside and outside the linings is 1.0℃~11.9℃, and the temperature difference inside and outside the linings can meet the conditions in winter. The minimum temperature difference required by the infrared detection is 3.8℃, 1.8℃ and 1.4℃ when the corrosion rate of reinforcement is 6.51%, 19.02% and 23.16%. (2) The relationship among the corrosion rate of lining reinforcement(ρ), the temperature difference of inner surface of the secondary linings (T1) and the temperature difference between the inner and outer surfaces of the secondary linings(T2) isρ=1.1×105T−3.22T31+ 503.7T−0.92T1. When the temperature difference inside and outside the lining is 3℃~30℃, the detectable corrosion rate of reinforcement is 9.78%~1.18%. (3) Through the heat conduction effect caused by the temperature difference inside and outside the linings, the position and degree of reinforcement corrosion can be comprehensively judged from the temperature distribution on the inner surface of the linings, which provides a new rapid detection method for the corrosion of shallow reinforcement in tunnel linings.
-
Keywords:
- tunnel lining /
- reinforcement corrosion /
- infrared detection /
- laboratory test /
- numerical analysis
-
-
表 1 试件钢筋锈蚀率和平均锈蚀厚度
Table 1 Corrosion rates and average corrosion thicknesses of rebar in specimens
试件编号 1 2 3 4 5 钢筋通电时间/h 272 492 432 612 0 钢筋锈蚀率/% 6.51 19.02 15.65 23.16 0 钢筋锈蚀厚度/mm 0.33 1.00 0.82 1.23 0 表 2 隧道衬砌内外温度
Table 2 Inner and outer temperatures of tunnel linings
测量日期 洞口温度/℃ 二衬表面温度/℃ 防水板内侧(靠近二衬)温度/℃ 2021-11-14 18.1 19.2 21.1 2021-11-20 17.1 18.4 21.3 2021-11-23 16.5 17.5 22.6 2021-11-25 16.3 17.8 21.8 2021-12-03 15.6 16.9 20.5 表 3 材料热性能参数
Table 3 Thermal performance parameters of materials
材料 导热系数/(W·m-1·℃-1) 比热容/(J·kg-1·℃-1) 密度/(kg·m-3) 混凝土 1.4 970.0 2242.5 钢筋 48.0 470.0 7850.0 锈蚀产物 0.12 1200.0 5300.0 表 4 不同自然温差下红外可检测的最小钢筋锈蚀率
Table 4 Infra-red detectable minimum reinforcement corrosion rate under different natural temperature differences
自然温差/℃ 3 5 7 10 13 15 20 25 30 最小钢筋锈蚀率/% 9.78 6.00 4.40 3.18 2.51 2.20 1.70 1.39 1.18 -
[1] 交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JTCK202106025.htm Ministry of Transport. Statistical bulletin on the development of transportation industry in 2020[J]. Finance & Accounting for Communications, 2021(6): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTCK202106025.htm
[2] TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.
[3] PARTHIBAN T, RAVI R, PARTHIBAN G T. Potential monitoring system for corrosion of steel in concrete[J]. Advances in Engineering Software, 2006, 37(6): 375-381. doi: 10.1016/j.advengsoft.2005.09.004
[4] 王海彦, 骆宪龙, 杨石柱. 隧道围岩温度场变化规律理论分析[J]. 石家庄铁路职业技术学院学报, 2006, 5(2): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZB200602006.htm WANG Haiyan, LUO Xianlong, YANG Shizhu. Analysis of the variation rule about the tunnel surrounding rock's temperature field[J]. Journal of Shijiazhuang Institute of Railway Technology, 2006, 5(2): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZB200602006.htm
[5] 程凡. 鲁霍一级公路阿拉坦隧道温度场特性研究[D]. 西安: 长安大学, 2009. CHENG Fan. Research on the Temperature Field of Alatan Tunnel in Lu-Huo Highway[D]. Xi'an: Changan University, 2009. (in Chinese)
[6] KOBAYASHI K, BANTHIA N. Corrosion detection in reinforced concrete using induction heating and infrared thermography[J]. Journal of Civil Structural Health Monitoring, 2011, 1(1): 25-35.
[7] WIGGENHAUSER H. Active IR-applications in civil engineering[J]. Infrared Physics & Technology, 2002, 43(3/4/5): 233-238.
[8] WASHER G, FENWICK R, BOLLENI N, et al. Effects of environmental variables on infrared imaging of subsurface features of concrete bridges[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2108(1): 107-114 doi: 10.3141/2108-12
[9] MATSUURA Y, MITSUNAGA K, HANAFUSA T. Development of high-speed thermal infrared imaging system for tunnel lining[J]. IEEJ Transactions on Fundamentals and Materials, 2009, 129(11): 755-762. doi: 10.1541/ieejfms.129.755
[10] 川上幸一, 小西真治, 篠原秀明, など. 赤外線熱計測による地下鉄覆工コンクリートの浮き検出方法の検討とその応用[J]. 土木学会論文集F1(トンネル工学), 2018, 74(1): 25-39. doi: 10.2208/jscejte.74.25 KAWAKAMI Kouichi, KONISHI Shinji, SHINOHARA Hideaki, et al. Infrared thermometry application to the detection of void in the subway tunnel lining surface[J]. Journal of Japan Society of Civil Engineers, Ser. F1(Tunnel Engineering), 2018, 74(1): 25-39. (in Japanese) doi: 10.2208/jscejte.74.25
[11] 刘学增, 唐精, 杨芝璐, 等. 隧道衬砌浅层剥离的红外探测方法[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2876-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1030.htm Liu Xuezeng, TANG Jing, YANG Zhilu, et al. Infrared detection method for shallow peeling of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2876-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1030.htm
[12] 高徳類, 新井淳一, 野嶋潤一郎, など. 赤外線を用いたコンクリート中の鉄筋腐食状況の把握に関する研究[J]. コンクリート工学年次論文集, 2014, 36(1): 2032-2037. TAKANORI Tagui, ARAI Junichi, NOJIMA Junichiro, et al. Study on reinforcement corrosion situation in concrete using infrared ray[J]. Journal of Concrete Engineering, 2014, 36(1): 2032-2037. (in Japanese)
[13] ROCHA J H A, PÓVOAS Y V. Detection of corrosion in reinforced concrete with infrared thermography and ultrasound[J]. Ambiente Construído, 2019, 19(3): 53-68. doi: 10.1590/s1678-86212019000300324
[14] 钱琦. 锈胀开裂状态下红外成像法检测钢筋锈蚀率的研究[D]. 昆明: 昆明理工大学, 2018. QIAN Qi. Study on Detection of Corrosion Rate of Steel Bars by Infrared Imaging Method under Rust Expansion and Cracking State[D]. Kunming: Kunming University of Science and Technology, 2018. (in Chinese)
[15] 干伟忠, 金伟良, 高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报, 2011, 32(2): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201102007.htm GAN Weizhong, JIN Weiliang, GAO Mingzan. Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201102007.htm
[16] 袁思奇. 钢筋锈蚀环境下混凝土结构全寿命周期设计与优化初探[D]. 镇江: 江苏大学, 2017. YUAN Siqi. Life-Cycle Design and Optimization of Concrete Structures with Reinforcement Corrosion[D]. Zhenjiang: Jiangsu University, 2017. (in Chinese)
[17] 公路隧道设计规范第一册土建工程: JTG 3370.1— 2018[S]. 北京: 人民交通出版社, 2019. Specifications for Design of Highway Tunnels Section 1 Civil Engineering: JTG 3370.1—2018[S]. Beijing: China Communications Press, 2019. (in Chinese)
[18] 王坤, 赵羽习, 夏晋. 混凝土结构锈裂形态试验研究及数值模拟[J]. 建筑结构学报, 2019, 40(7): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201907015.htm WANG Kun, ZHAO Yuxi, XIA Jin. Experimental study and numerical simulation of corrosion-induced crack patterns of concrete structures[J]. Journal of Building Structures, 2019, 40(7): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201907015.htm
[19] 大下英吉, 堀江宏明, 長坂慎吾, など. 電磁誘導加熱によるコンクリート表面温度性状に基づいたRC構造物の鉄筋腐食性状に関する非破壊検査手法[J]. 土木学会論文集E, 2009, 65(1): 76-92. OSHITA Hideki, HORIE Hiroaki, NAGASAKA Shingo, et al. Nondestructive evaluation of corrosion in reinforced concrete by thermal behavior on concrete surface due to electro-magnetic heating[J]. Journal of Japan Society of Civil Engineers, Se E, 2009, 65(1): 76-92. (in Japanese)
[20] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国水利水电出版社, 2012. ZHU Bofang. Temperature Stress and Temperature Control of Mass Concrete[M]. 2nd ed. Beijing: China Water & Power Press, 2012. (in Chinese)
-
期刊类型引用(27)
1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术
其他类型引用(47)