Macro- and meso-scopic deformation mechanisms of EPS-mixed soils based on refined numerical simulation
-
摘要: EPS轻质土是双固相组分(水泥土与EPS颗粒)、具有特殊细观结构的混合土。当前对其宏观力学特性研究较多,而对细观力学响应规律研究甚少。为此,分别在Mohr-Coulomb模型和Drucker-Prager模型框架内,基于水泥土和EPS材料试验结果规律总结,发展了二者的简单实用本构模型;基于水泥土和EPS材料界面剪切试验,总结了界面剪切硬化/软化规律;对EPS轻质土三轴剪切试验进行精细化数值模拟,再现了EPS轻质土宏观应力-应变响应规律和试样变形模式。基于精细化模拟分析发现,EPS轻质土的整体剪切、局部鼓胀、整体均匀3种宏观变形模式是细观力学响应的结果,EPS颗粒与水泥土两种材料力学特性的差异引起试样内部应力、应变的非均匀分布,EPS颗粒的非均匀排列强化应力、应变非均匀分布程度,两种因素共同决定试样宏观变形的非均匀性。Abstract: The EPS-mixed soils are composed of two solid phases (cemented soils and EPS beads) with the unique mesoscopic structure. The macroscopic behaviour of the EPS-mixed soils has been widely investigated so far, but the focus has seldom been put on the mesoscopic behaviour. In this study, following the frameworks of Mohr-Coulomb model and Drucker-Prager model respectively, the constitutive descriptions of the cemented soils and the EPS materials are developed based on their mechanical test results. Besides, the strain hardening/softening laws of the cemented soil-EPS material interface are summarized based on the interface shear tests. The refined numerical simulations of triaxial shear tests on the EPS-mixed soils are carried out, with which the macroscopic stress-strain behavior and deformation modes of the EPS-mixed soil specimens are replicated. The refined numerical simulations reveal that the three types of deformation modes of the specimens (shear banding, local lateral expansion, overall uniform deformation) can be attributed to the non-uniform mesoscopic mechanical responses. The distinct mechanical behavior of the cemented soils and the EPS materials is the origin of non-uniform stress and strain distributions, and such non-uniformity is enhanced by the non-uniform spatial distribution of the EPS beads. The two factors collaboratively determine the non-uniformity of the macroscopic deformation observed for the EPS-mixed soil specimen.
-
宋二祥老师对敝人《稳定安全系数计算公式中荷载与抗力错位影响探讨》[1](以下简称原文)提出了宝贵的指导及讨论意见,非常感谢!
宋文提出“边坡稳定安全系数的定义......是边坡土体所具有的抗剪强度与保持边坡刚好稳定所需要的强度之比,所以没有抗力与荷载错位的问题”。正如宋老师在其文献[4][2]所指出的,边坡稳定安全系数目前主要有两种定义方法:①为抗滑力矩与下滑力矩之比(可简化为抗力荷载比),相应的稳定安全系数计算方法一般采用单一安全系数法;②即为上述的抗剪强度比,毕肖普、简布等将之定义为滑动面上的抗剪强度与实际产生的剪应力之比,相应的稳定安全系数计算方法一般采用强度(抗剪强度)折减法。宋文认为自然边坡等土工结构的稳定更适合采用第二种定义形式而不是第一种。原文没有讨论哪种安全系数定义更合理,讨论的是业界按第一种定义编写的安全系数计算公式有时并不完全符合第一种定义这种现象,现在讨论边坡稳定工程中按第二种定义会不会有抗力与荷载错位现象及强度折减法适用性问题。
仍以瑞典条分法为例,当滑弧中心点O位于边坡上方时,如图1所示,土条1~(m-1)的重力产生下滑力
m−1∑i=1Gti ,土条m~n的重力产生抗滑力n∑i=mGti ,两者作用方向相反,稳定安全系数K计算公式按第一种定义、当抗力与荷载发生原文所示第1类错位现象时可写为m−1∑i=1Gti−n∑i=mGti=n∑i=1(Gnitanφi+cili)K。 (1) 按笔者建议的抗力与荷载归位时可写为
m−1∑i=1Gti=n∑i=1Gnitanφi+ciliK+n∑i=mGtiK, (2) 按强度折减法可写为
m−1∑i=1Gti=n∑i=1(GnitanφiK+ciKli)+n∑i=mGti1。 (3) 将式(1)~(3)进行比较可知:
(1)式(3)与式(1)相同。式(3)在形式上用强度指标除以K,直观地表达了强度折减法,因为K只涉及到抗剪强度而没有涉及其它抗力或荷载,即
n∑i=mGti 等作为荷载还是抗力都不会影响到K计算结果,也就不存在错位与否,故从第二种定义角度来看,式(1)所表达的第1类错位问题不存在。(2)原文中总结了抗力与荷载错位现象的3类基本形式及2类组合形式(原文中式(5)~(9)),其中第2类形式以图1为例可写为
m−1∑i=1Gti=n∑i=mGti=n∑i=1(GnitanφiK+ciKli)。 (4) 第2类错位现象把部分抗力
n∑i=mGti 作为荷载直接与荷载m−1∑i=1Gti 相加,可认为是对抗力与荷载概念的理解有误或故意为之(目的是在目标安全系数K维持不变时提高设计抗力、以使工程变得更安全),这与采用第一种或第二种定义无关,故采用第二种定义亦不能解决;第3类错位现象对部分荷载也除以了安全系数,采用第二种定义时因为安全系数不涉及荷载,故也不存在这类错位现象;第4类错位现象是第1类与第3类的组合,从第二种定义角度来看也没有错位问题;第5种错位现象是第2类与第3类的组合,存在着与第2类同样的问题,具体不再赘述。总之,在对抗力与荷载的概念理解及应用无误时,采用第二种定义的安全系数计算公式,如宋文所言,确实不存在采用第一种定义时的抗力与荷载错位问题。(3)和式(3)及式(1)相比,式(2)对
n∑i=mGti 项等所有抗力均除以了同一安全系数K,符合单一安全系数法规定的安全系数为抗力与荷载之比这个定义,故为单一安全系数法。从概率设计的角度,可认为式(3)中n∑i=mGti 项的抗力分项系数为1,而抗剪强度的抗力分项系数为K,因两者不等且通常K>1,故式(3)表达的强度折减法具有了概率含义,并非传统意义上的单一安全系数法。采用强度折减法时:
(1)因岩土重力的变异性小于抗剪强度的,式(3)中
n∑i=mGti 项对应的抗力分项系数取1,小于K看起来也合理,但仅取1,没有一点安全裕度是否合适?式(3)比式(2)计算得到的K值更高,对于工程而言更偏于不安全。(2)如图1所示,按式(3)计算第二种定义的安全系数,
m−1∑i=1Gti =n∑i=mGti 时K值无穷大,m−1∑i=1Gti <n∑i=mGti 时K值为负,但显然安全系数不能无穷大甚至为负。这种情况而非完全虚拟,例如土石坝拦挡淤泥工程,n∑i=mGti 项抗力由土石坝产生,土石坝足够稳定时就有可能发生类似计算结果;再如原文所示的锚固结构,锚杆提供的抗力足够大时也可能发生类似计算结果,也就是说当岩土体抗剪强度以外的因素产生了抗滑力且较大时,式(3)所示的强度折减法也可能会产生安全系数计算结果不合理问题,如同发生抗力与荷载错位现象一样;但如果按原文所建议的抗力与荷载归位后的计算公式则没有类似问题。故强度折减法可能更适用于仅由岩土体抗剪强度提供抗滑力时的自然边坡稳定计算,这也许就是现有技术标准中不太采用第二种定义形式对有支挡结构的人工边坡进行稳定验算的主要原因。总结:①原文边坡稳定安全系数计算公式中的抗力与荷载错位现象是按第一种定义总结的,部分错位现象是对抗力与荷载概念的理解及应用不当造成的,采用第二种定义并不能解决因此而导致的安全系数不准确问题;②在对抗力与荷载概念的理解及应用无误时,采用第二种定义则不存在第一种定义时抗力与荷载错位问题,宋文观点是正确的;③有岩土体抗剪强度以外的因素提供抗滑力且较大时,强度折减法计算结果与发生了错位现象的抗力荷载比法一样,都存在着稳定安全系数计算结果不合理现象,对有支挡的人工边坡有时可能不太适用。
以上观点不妥之处,敬请宋老师及读者们继续批评指正。
-
图 3 EPS材料的典型三轴剪切力学响应(ρ=20 kg/m3)[30]
Figure 3. Typical mechanical behaviors of EPS materials under triaxial shear loading
表 1 不同水泥掺入比下水泥土发挥剪胀角公式的拟合参数
Table 1 Fitting parameters for mobilized dilation angle of cemented soils under different cement contents
水泥掺入
比/%a1 a2 a3 a4 a5 6 398 7.0 0.40 -0.020 -56 8 177 3.2 0.72 -0.030 -53 10 70.0 1.3 0.75 -0.008 -57 -
[1] 梅利芳, 徐光黎. 纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J]. 复合材料学报, 2016, 33(10): 2355-2362. doi: 10.13801/j.cnki.fhclxb.20160621.001 MEI Lifang, XU Guangli. Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2355-2362. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20160621.001
[2] TIWARI N, SATYAM N, KUMAR SHUKLA S. An experimental study on micro-structural and geotechnical characteristics of expansive clay mixed with EPS granules[J]. Soils and Foundations, 2020, 60(3): 705-713. doi: 10.1016/j.sandf.2020.03.012
[3] GAO H M, CHEN Y M, LIU H L, et al. Creep behavior of EPS composite soil[J]. Science China Technological Sciences, 2012, 55(11): 3070-3080. doi: 10.1007/s11431-012-4967-6
[4] HOU T S, MA W G, YANG K X. One-dimensional compression creep characteristics of light weight soil mixed with Weihe River mud and EPS particles[J]. Geotechnical and Geological Engineering, 2021, 39(6): 4341-4353. doi: 10.1007/s10706-021-01765-4
[5] GAO H M, BU C Y, WANG Z H, et al. Dynamic characteristics of expanded polystyrene composite soil under traffic loadings considering initial consolidation state[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 86-98. doi: 10.1016/j.soildyn.2017.08.012
[6] GAO Y, WANG S, CHEN C. A united deformation-strength framework for Lightweight Sand–EPS Beads Soil (LSES) under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. doi: 10.1016/j.soildyn.2011.04.002
[7] 李明东, 田安国. 泡沫塑料混合轻质土在循环荷载下的力学性质[J]. 岩土工程学报, 2010, 32(11): 1806-1810. http://www.cgejournal.com/cn/article/id/8467 LI Mingdong, TIAN Anguo. Mechanical properties of EPS beads mixed lightweight soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1806-1810. (in Chinese) http://www.cgejournal.com/cn/article/id/8467
[8] 庄心善, 周睦凯, 陶高梁, 等. 循环荷载下发泡聚苯乙烯改良膨胀土动弹性模量与阻尼比试验研究[J]. 岩土力学, 2021, 42(9): 2427-2436. doi: 10.16285/j.rsm.2021.0061 ZHUANG Xinshan, ZHOU Mukai, TAO Gaoliang, et al. Experimental study of dynamic elastic modulus and damping ratio of improved expansive soil under cyclic loading by expanded polystyrene[J]. Rock and Soil Mechanics, 2021, 42(9): 2427-2436. (in Chinese) doi: 10.16285/j.rsm.2021.0061
[9] KAZEMPOUR S, CHENARI R J, AHMADI H, et al. Assessment of the compression characteristics and coefficient of lateral earth pressure of aggregate- expanded polystyrene beads composite fill-backfill using large oedometer experiments[J]. Construction and Building Materials, 2021, 302: 124145. doi: 10.1016/j.conbuildmat.2021.124145
[10] 侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10-17. doi: 10.3321/j.issn:1001-7372.2009.06.002 HOU Tianshun, XU Guangli. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10-17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
[11] 肖杨, 邓安. 基于椭圆-抛物双屈服面模型的砂-聚苯乙烯颗粒轻质填料应力应变分析[J]. 岩土工程学报, 2009, 31(9): 1467-1471. doi: 10.3321/j.issn:1000-4548.2009.09.024 XIAO Yang, DENG An. Stress-strain analyses of sand-EPS lightweight-bead fills based on elliptic-parabolic yield surfaces model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1467-1471. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.024
[12] 朱伟, 姬凤玲, 马殿光, 等. 疏浚淤泥泡沫塑料颗粒轻质混合土的抗剪强度特性[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5721-5726. ZHU Wei, JI Fengling, MA Dianguang, et al. Shear strength properties of lightweight bead-treated soil made from dredged silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5721-5726. (in Chinese)
[13] 姬凤玲, 董卫国, 李强. 淤泥EPS颗粒轻质土单向压缩下渐进性破坏研究[J]. 环境科学与技术, 2016, 39(9): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201609008.htm JI Fengling, DONG Weiguo, LI Qiang. Study on the progressive failure of lightweight EPS-bead treated soil made from dredging silt under uniaxial compression[J]. Environmental Science & Technology, 2016, 39(9): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201609008.htm
[14] 王庶懋, 高玉峰. 砂土与EPS颗粒混合的轻质土(LSES)细观结构的CT研究[J]. 岩土力学, 2006, 27(12): 2137-2142. doi: 10.3969/j.issn.1000-7598.2006.12.010 WANG Shumao, GAO Yufeng. Research on meso-structure of lightweight sand-EPS beads soil (LSES) using CT[J]. Rock and Soil Mechanics, 2006, 27(12): 2137-2142. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.010
[15] YAGHOOBZADEH S, AZIZKANDI A S, SALEHZADEH H, et al. Effect of EPS beads on the behavior of sand-EPS and slope stability using triaxial and centrifuge tests[J]. International Journal of Civil Engineering, 2021, 19(11): 1269-1282. doi: 10.1007/s40999-021-00617-9
[16] 顾欢达, 顾熙. 两相体模型在评价发泡颗粒轻质土应力-应变特性中的应用[J]. 岩土工程学报, 2006, 28(8): 994-997. doi: 10.3321/j.issn:1000-4548.2006.08.012 GU Huanda, GU Xi. Application of double-phase model to evaluate stress-strain of foamed beads light soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 994-997. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.012
[17] 刘汉龙, 董金梅, 周云东, 等. 聚苯乙烯轻质混合土应力-应变特性分析[J]. 岩土工程学报, 2004, 26(5): 579-583. doi: 10.3321/j.issn:1000-4548.2004.05.001 LIU Hanlong, DONG Jinmei, ZHOU Yundong, et al. Study on the stress-strain characteristics of light heterogeneous soil mixed with expanded polystyrene[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 579-583. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.001
[18] 侯天顺. 特征含水率对轻量土基本性质的影响规律[J]. 岩土力学, 2012, 33(9): 2581-2587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm HOU Tianshun. Influence law of characteristic water content on basic properties of light weight soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2581-2587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm
[19] 马时冬. 聚苯乙烯泡沫塑料轻质填土(SLS)的特性[J]. 岩土力学, 2001, 22(3): 245-248, 314. doi: 10.3969/j.issn.1000-7598.2001.03.002 MA Shidong. The properties of stabilized light soil (SLS) with expanded polystyrene[J]. Rock and Soil Mechanics, 2001, 22(3): 245-248, 314. (in Chinese) doi: 10.3969/j.issn.1000-7598.2001.03.002
[20] ASHNA K N, CHANDRAKARAN S. Experimental Study on stress-strain behaviour of EPS beads sand mixture[C]//International Conference on Geotechniques for Infrastructure Projects 27th & 28th February. Thiruvananthapura, 2017.
[21] NAWGHARE S M, MANDAL J N. Effectiveness of expanded polystyrene (EPS) beads size on fly ash properties[J]. International Journal of Geosynthetics and Ground Engineering, 2020, 6(1): 1-11.
[22] 兰鑫, 侯天顺, 杨艳, 等. EPS颗粒混合轻量土动力变形特性离散元分析[J]. 土木工程与管理学报, 2020, 37(3): 147-154. LAN Xin, HOU Tianshun, YANG Yan, et al. Discrete element analysis on dynamic deformation characteristics of light weight soil mixed with EPS particles[J]. Journal of Civil Engineering and Management, 2020, 37(3): 147-154. (in Chinese)
[23] OMINE K, OCHIAI H, YASUFUKU N. Evaluation of strength-deformation properties of light-weight soils based on two-phase mixture model[C]//Twelfth Southeast Asian Geotechnical Conference. Kulua, 1996.
[24] ATMATZIDIS D K, MISSIRLIS E G, CHRYSIKOS D A. An investigation of EPS Geofoam behaviour in compression[C]//EPS Geofoam 2001—Third International Conference. Salt Lake City, 2001.
[25] DUSKOV M. Materials research on EPS20 and EPS15 under representative conditions in pavement structures[J]. Geotextiles and Geomembranes, 1997, 15(1/2/3): 147-181.
[26] HAZARIKA H. Stress-strain modeling of EPS geofoam for large-strain applications[J]. Geotextiles and Geomembranes, 2006, 24(2): 79-90.
[27] OSSA A, ROMO M P. Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam[J]. Geosynthetics International, 2009, 16(5): 327-338.
[28] PREBER T, BANG S, CHUNG Y, et al. Behavior of expanded polystyrene blocks[J]. Transportation Research Record, 1994(1462): 36-46.
[29] LEO C J, KUMRUZZAMAN M, WONG H, et al. Behavior of EPS geofoam in true triaxial compression tests[J]. Geotextiles and Geomembranes, 2008, 26(2): 175-180.
[30] WONG H, LEO C J. A simple elastoplastic hardening constitutive model for EPS geofoam[J]. Geotextiles and Geomembranes, 2006, 24(5): 299-310.
[31] EDO. Expanded Polystyrene Construction Method[M]. Tokyo: Riko Tosho Publishers, 1992.
[32] HORVATH J S. Geofoam Geosynthetic[M]. New York: Horvath Engineering, 1995.
[33] KANG Y, LI X, Tan J. Uniaxial tension and tensile creep behaviors of EPS[J]. Journal of Central South University of Technology, 2008, 15(1): 202-205.
[34] HORVATH J S. Expanded polystyrene (EPS) geofoam: an introduction to material behavior[J]. Geotextiles and Geomembranes, 1994, 13(4): 263-280.
[35] CHUN B S, LIM H, SAGONG M, et al. Development of a hyperbolic constitutive model for expanded polystyrene (EPS) geofoam under triaxial compression tests[J]. Geotextiles and Geomembranes, 2004, 22(4): 223-237.
-
期刊类型引用(1)
1. 余旭. 河道整治工程护坡型式综合比选模型构建及分析研究. 水利科技与经济. 2024(02): 35-40 . 百度学术
其他类型引用(0)
-
其他相关附件