Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含水合物土体的土水特征曲线及渗透系数

颜荣涛, 徐玉博, 颜梦秋

颜荣涛, 徐玉博, 颜梦秋. 含水合物土体的土水特征曲线及渗透系数[J]. 岩土工程学报, 2023, 45(5): 921-930. DOI: 10.11779/CJGE20220123
引用本文: 颜荣涛, 徐玉博, 颜梦秋. 含水合物土体的土水特征曲线及渗透系数[J]. 岩土工程学报, 2023, 45(5): 921-930. DOI: 10.11779/CJGE20220123
YAN Rongtao, XU Yubo, YAN Mengqiu. Soil-water characteristic curve and permeability of hydrate-bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 921-930. DOI: 10.11779/CJGE20220123
Citation: YAN Rongtao, XU Yubo, YAN Mengqiu. Soil-water characteristic curve and permeability of hydrate-bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 921-930. DOI: 10.11779/CJGE20220123

含水合物土体的土水特征曲线及渗透系数  English Version

基金项目: 

国家自然科学基金项目 11962004

广西科技基地和人才专项 桂科AD20325010

详细信息
    作者简介:

    颜荣涛(1984—),男,博士,教授,主要从事岩土力学的教学和科研工作。E-mail: 2012019@glut.edu.cn

  • 中图分类号: TU411

Soil-water characteristic curve and permeability of hydrate-bearing soils

  • 摘要: 含水合物土的土水特征曲线和渗透系数对分析水合物开采效率和地层稳定性具有重要意义。通过自我改造而成的含水合物土的土水特征曲线的测试装置,测试了含水合物土(黏质粉土和砂土)的土水特征曲线,研究了水合物形成对土体的土水特征曲线的影响规律和机理,并且分析了含水合物土体的非饱和状态下的渗透系数。试验结果分析表明:水合物形成对含水合物土体的土水特征曲线存在明显影响;随着水合物饱和度的增长,可以看到边界效应段明显增大,过渡段土水特征曲线变得逐渐平缓,非饱和残余段对于残余水饱和度更低,但是VG模型仍能有效的描述含水合物土的土水特征曲线;进气值随着水合物饱和度的增加而增大,而残余有效水饱和度则随之减小,这主要是由于水合物形成改变了沉积物内部的孔隙孔径分布特征。在非饱和状态下,由于渗流通道被气体挤占,含水合物土的相对渗透系数随毛细吸力增加而减小,但是在同样的毛细吸力下,越大的水合物饱和度对应的相对渗透系数越小。
    Abstract: Understanding the soil-water characteristic curve (SWCC) and permeability of hydrate-bearing soils plays a critical role in analyzing the production efficiency and layer stability during hydrate exploitation. Based on the self-improved apparatus, hydrate is formed within clayey silt and sand sediment, and the SWCC of the hydrate-bearing clayey silt and sand is measured. Further, the influence law and mechanism of hydrate formation on the SWCC are investigated, and the permeability of the hydrate-bearing soils at unsaturated state is analyzed. The test results show the hydrate formation has a significant effect on the SWCC of the hydrate-bearing soils. As the hydrate saturation increases, the boundary effect segment remarkably increases, the SWCC changes gently during the transition segment, and the corresponding saturation reduces. However, the VG model is able to address the SWCC of the hydrate-bearing soils. Since the hydrate formation changes the pore-size distribution structure of the hydrate-bearing soils, the gas entry pressure increases but the saturation of the effective residual water decreases with the increasing hydrate saturation. Under the unsaturated state, the relative permeability of the hydrate-bearing soils reduces with the increasing capillary suction as the seepage channel is crowded by gas. At a given capillary suction, the higher hydrate saturation corresponds to the smaller relative permeability.
  • 图  1   试验装置示意图

    Figure  1.   Schematic diagram for measuring soil-water characteristic curve of hydrate-bearing soils

    图  2   试验土体的颗粒级配曲线

    Figure  2.   Grain-size distribution curves of testing soils

    图  3   含水合物土体的土水特征曲线

    Figure  3.   Soil-water characteristic curve for HBS

    图  4   含水合物土体的SWCC曲线

    Figure  4.   Soil-water characteristic curves for HBS

    图  5   不同含水合物土体中的SWCC曲线

    Figure  5.   Soil-water characteristic curves for different HBS

    图  6   土水特征曲线模型模拟

    Figure  6.   Simualtions for soil water characteristic curves of HBS

    图  7   残余水饱和度和进气值随水合物饱和度的变化关系

    Figure  7.   Change in residual water saturation and gas entry pressure versus hydrate saturation

    图  8   含水合物土体的核磁试验结果

    Figure  8.   NMR testing results for HBS

    图  9   水合物形成前后含水合物土的内部结构示意图

    Figure  9.   Schematic diagram for inter-structure of HBS before and after the hydrate formation

    图  10   含水合物土的相对渗透系数(试样A和试样B)

    Figure  10.   Relative permeability of HBS (Specimens A and B)

    表  1   土的基本物性指标

    Table  1   Basic physical properties of soils

    土样
    类型
    相对质量密度 预制
    干密度/
    (g·cm-3)
    液限
    wL/%
    塑限wP/% 塑限指数Ip 不均匀系数Cu 曲率系数Cc
    试样A 2.65 1.5 32.8 23.3 9.5 19 1.89
    试样B 2.65 1.5 2.98 1.36
    下载: 导出CSV

    表  2   van Genuchten (VG)模型参数(试样A)

    Table  2   Model parameters for van Genuchten Model (Soil A)

    参数 Srw α/kPa-1 m n R2
    Sh=0 0.582 0.110 0.019 46.115 0.9961
    Sh=0.35 0.490 0.104 0.019 45.230 0.9936
    Sh=0.50 0.358 0.040 0.185 6.034 0.9985
    Sh=0.65 0.180 0.035 0.200 5.819 0.9954
    注:R2为相关系数。
    下载: 导出CSV

    表  3   van Genuchten (VG)模型参数(试样B)

    Table  3   Model parameters for van Genuchten Model (Soil B)

    参数 Srw α/kPa-1 m n R2
    Sh=0 0.419 0.218 0.027 34.131 0.9839
    Sh=0.35 0.378 0.150 0.014 83.230 0.9882
    Sh=0.50 0.311 0.105 0.030 60.051 0.9923
    下载: 导出CSV
  • [1]

    LIJITH K P, MALAGAR B R C, SINGH D N. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019, 104: 270-285. doi: 10.1016/j.marpetgeo.2019.03.024

    [2] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges[J]. Natural Gas Industry, 2020, 40(8): 116-132. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009

    [3] 张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述[J]. 中国科学: 物理学 力学 天文学, 2019, 49(3): 38-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903003.htm

    ZHANG Xunhui, LU Xiaobing, LI Peng. A comprehensive review in natural gas hydrate recovery methods[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(3): 38-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903003.htm

    [4]

    RUTQVIST J, MORIDIS G J, GROVER T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012(92/93): 65-81.

    [5]

    KIMOTO S, OKA F, FUSHITA T. A chemo-thermo- mechanically coupled analysis of ground deformation induced by gas hydrate dissociation[J]. International Journal of Mechanical Sciences, 2010, 52(2): 365-376. doi: 10.1016/j.ijmecsci.2009.10.008

    [6]

    ZHOU M, SOGA K, YAMAMOTO K, et al. Geomechanical responses during depressurization of hydrate-bearing sediment formation over a long methane gas production period[J]. Geomechanics for Energy and the Environment, 2020, 23: 100111. doi: 10.1016/j.gete.2018.12.002

    [7]

    DAI S, SANTAMARINA J C. Water retention curve for hydrate-bearing sediments[J]. Geophysical Research Letters, 2013, 40(21): 5637-5641. doi: 10.1002/2013GL057884

    [8] LU Ning, WILLIAM J L. 非饱和土力学[M]. 韦昌富, 等译. 北京: 高等教育出版社, 2012.

    LU Ning, WILLIAM J L. Unsaturated Soil Mechanics[M]. WEI Cangfu, et al trans. Beijing: Higher Education Press, 2012. (in Chinese)

    [9]

    AUBERTIN M, MBOINMPA M, BUSSIERE B, et al. A model to predict the water retention curve from basic geothecnical properties[J]. Canadian Geotechnique Journal, 2003, 40(6): 1104-1122. doi: 10.1139/t03-054

    [10]

    MAHABADI N, DAI S, SEOL Y, et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation[J]. Geochemistry Geophysics Geosystems, 2016, 17: 3099-3110. doi: 10.1002/2016GC006372

    [11]

    MAHABADI N, ZHENG X, JANG J. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments[J]. Geophysical Research Letters, 2016, 43: 1-9. doi: 10.1002/grl.53435

    [12]

    LEONG E C, RAHARDIO H. Review of soil water characteristic curve equations[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1997, 123(12): 1106-1117.

    [13] 蔡国庆, 韩博文, 杨雨, 等. 砂质黄土土-水特征曲线的试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 11-15. doi: 10.11779/CJGE2020S1003

    CAI Guoqing, HAN Bowen, YANG Yu, et al. Experimental study on soil-water characteristic curves of sandy loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 11-15. (in Chinese) doi: 10.11779/CJGE2020S1003

    [14] 胡再强, 梁志超, 郭婧, 等. 非饱和石灰改良黄土的渗水系数预测[J]. 岩土工程学报, 2020, 42(增刊2): 26-31. doi: 10.11779/CJGE2020S2005

    HU Zaiqiang, LIANG Zhichao, GUO Jing, et al. Prediction of permeability coefficient of unsaturated lime-improved loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 26-31. (in Chinese) doi: 10.11779/CJGE2020S2005

    [15] 姚志华, 陈正汉, 黄雪峰, 等. 非饱和原状和重塑Q3黄土渗水特性研究[J]. 岩土工程学报, 2012, 34(6): 1020-1027. http://www.cgejournal.com/cn/article/id/14601

    YAO Zhihua, CHEN Zhenghan, HUANG Xuefeng, et al. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020-1027. (in Chinese) http://www.cgejournal.com/cn/article/id/14601

    [16] 陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9-20. http://www.cgejournal.com/cn/article/id/9669

    CHEN Zhenghan, XIE Dingyi, WANG Yong-sheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9-20. (in Chinese) http://www.cgejournal.com/cn/article/id/9669

    [17]

    KUNZE R J, UEHARA G, GRAHAM K. Factors important in the calculation of hydraulic conductivity[J]. Soil Science Society of America Proceedings, 1968, 32(6): 760-765. doi: 10.2136/sssaj1968.03615995003200060020x

    [18]

    SAMINGAN A S. Mechanical and hydraulic properties of compacted tropical residual soils[J]. Polymer Korea, 2009, 33(33): 97-103.

    [19]

    GARG N K, GUPTA M. Assessment of improved soil hydraulic parameters for soil water content simulation and irrigation scheduling[J]. Irrigation Science, 2015, 33(4): 247-264. doi: 10.1007/s00271-015-0463-7

    [20] 翟钱, 朱益瑶, 叶为民, 等. 全吸力范围非饱和土水力渗透系数的计算[J]. 岩土工程学报, 2021, 44(4): 660-668. doi: 10.11779/CJGE202204008

    ZHAI Qian, ZHU Yiyao, YE Wi-min, et al. Estimation of hydraulic conductivity of unsaturated soils under entire suction range[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 660-668. (in Chinese) doi: 10.11779/CJGE202204008

    [21] 李萍, 李同录, 王红, 等. 非饱和黄土土-水特征曲线与渗透系数Childs & Collis-Geroge模型预测[J]. 岩土力学, 2013, 34(增刊2): 184-189.

    LI Ping, LI Tonglu, WANG Hong, et al. Soil-water characteristic curve and permeability perdiction on Childs & Collis-Geroge model of unsaturated loess[J]. Rock and Soil Mechanics, 2013, 34(S2): 184-189. (in Chinese)

    [22] 谭志翔, 王正中, 葛建锐, 等. 北疆白砂岩与泥岩的土水特征曲线及渗透曲线实验研究[J]. 岩土工程学报, 2020, 42(增刊1): 229-233. doi: 10.11779/CJGE2020S1045

    TAN Zhixiang, WANG Zhengzhong, GE Jianrui, et al. Experimental study on soil-water characteristic curve and permeability curve of white sandstone and mudstone in northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 229-233. (in Chinese) doi: 10.11779/CJGE2020S1045

    [23]

    LIU C, MENG Q, HU G, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J]. Interpretation, 2017, 5(3): 1-39.

    [24]

    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.

    [25]

    LEE J Y, YUN T, SANTAMARINA J C, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments[J]. Geochemistry Geophysics Geosystems, 2007, 8(6): 1-10.

    [26] 任静雅, 鲁晓兵, 张旭辉. 水合物沉积物电阻特性研究初探[J]. 岩土工程学报, 2013, 35(增刊1): 161-165. http://www.cgejournal.com/cn/article/id/15179

    REN Jingya, LU Xiaobing, ZHANG Xuhui. Preliminary study on electric resistance of hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 161-165. (in Chinese) http://www.cgejournal.com/cn/article/id/15179

    [27]

    LEE J Y, SANTAMARINA J C, RUPPEL C, Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03007.

    [28]

    KIM J, SEOL Y, DAI S, The coefficient of earth pressure at rest in hydrate-bearing sediments[J]. Acta Geotechnica, 2021, 16: 2729-2739.

    [29]

    LEE J Y, SANTAMARINA J C, RUPPEL C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates[J]. Marine and Petroleum Geology, 2008, 25(9): 884-895.

    [30] 孙德安, 刘文捷, 吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345-3351.

    SUN De'an, LIU Wenjie, LÜ Haibo. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12): 3345-3351. (in Chinese)

    [31]

    HAN Z, VANAPALLI S K. Stiffness and shear strength of unsaturated soils in relation to soil-water characteristic curve[J]. Geotechnique, 2016, 66(8): 627-647.

    [32]

    VAN GENUCHTEN M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

    [33]

    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Can Geotech J, 1994, 31: 521-531.

    [34]

    HAN Z, VANAPALLI S K. Simple approaches for modeling hysteretic soil water retention behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019 145(10): 04019064.

    [35] 田慧会, 韦昌富, 魏厚振, 等. 压实黏质砂土脱湿过程影响机制的核磁共振分析[J]. 岩土力学, 2014, 35(8): 2129-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm

    TIAN Huihui, WEI Cangfu, WEI Houzhen, et al. A NMR-based analysis of drying processes of compacted clayey sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 35(8): 2121-2136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm

    [36] 陶高梁, 柏亮, 袁波, 等. 土-水特征曲线与核磁共振曲线的关系研究[J], 岩土力学, 2018, 39(3): 101-107.

    TAO Gaoliang, BAI Liang, YUAN Bo, et al. Study of relationship between soil-water characteristic curve and NMR curve[J], Rock and Soil Mechanics, 2018, 39(3): 101-107. (in Chinese)

    [37] 陈正汉. 非饱和土与特殊土力学: 理论创新、科研方法及治学感悟[M]. 北京: 中国建筑工业出版社, 2022.

    CHEN Zhenghan. Unsaturated Soil Mechanics and Special Soil Mechanics: Theoretical Innovation, Scientific Research Method and Research Insights[M]. Beijing: China Building Industry Press, 2022. (in Chinese)

    [38] 田慧会, 魏厚振, 颜荣涛, 等. 低场核磁共振在研究四氢呋喃水合物形成过程中的应用[J], 天然气工业, 2011, 31(7): 97-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201107030.htm

    TIAN Huihui, WEI Houzhen, YAN Rongtao, et al. Application of lowfield NMIR to the studies of the THF hydrate formation process[J]. Natural Gas Industry, 2011, 31(7): 97-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201107030.htm

    [39]

    ZHOU J, WEI C. Ice lens induced interfacial hydraulic resistance in frost heave[J]. Cold Regions Science and Technology, 2020, 171: 102964.

图(10)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回