• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

考虑筋材蠕变-温度耦合效应的加筋土挡墙变形分析

韩华欣, 肖成志, 丁鲁强, 崔飞龙, 王子寒

韩华欣, 肖成志, 丁鲁强, 崔飞龙, 王子寒. 考虑筋材蠕变-温度耦合效应的加筋土挡墙变形分析[J]. 岩土工程学报, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116
引用本文: 韩华欣, 肖成志, 丁鲁强, 崔飞龙, 王子寒. 考虑筋材蠕变-温度耦合效应的加筋土挡墙变形分析[J]. 岩土工程学报, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116
HAN Huaxin, XIAO Chengzhi, DING Luqiang, CUI Feilong, WANG Zihan. Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116
Citation: HAN Huaxin, XIAO Chengzhi, DING Luqiang, CUI Feilong, WANG Zihan. Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116

考虑筋材蠕变-温度耦合效应的加筋土挡墙变形分析  English Version

基金项目: 

国家自然科学基金项目 52078182

国家自然科学基金项目 41877255

详细信息
    作者简介:

    韩华欣(1997—),男,博士研究生,主要从事加筋土挡墙变形计算方面的研究工作。E-mail: hhx510828498@126.com

    通讯作者:

    肖成志, E-mail: chengzhixiao@hotmail.com

  • 中图分类号: TU433;U416.1

Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature

  • 摘要: 基于既有土工合成材料筋材蠕变试验结果及蠕变特性分析,构建一种考虑蠕变-温度耦合效应的筋材本构模型,并利用二维瞬态热传导方程,建立计算加筋土挡墙温度的有限差分公式,进而确定加筋土挡墙温度并结合筋材本构模型计算面板水平位移和筋材最大应变,综合分析了初始温度、温度幅值、筋材层间距、墙顶超载、填土内摩擦角和导热率等因素对挡墙水平位移和筋材应变的影响。计算结果表明:挡墙竣工后初次环境温度升温过程使面板水平位移和筋材最大应变增加明显,后续温度周期性变化时挡墙变形增长缓慢;挡墙初始温度越高,其初期变形增加明显,而增加温度幅值导致面板长期变形量增加明显;增加墙顶超载、筋材层间距或减小填土摩擦角,导致相同时间内面板水平变形增加明显;填土导热率对面板水平位移和筋材最大应变的影响较小;环境温度周期性变化下,3 a内挡墙最大水平位移δmax与墙高H比值δmax/H变化范围在0.9%~1.5%;筋材最大应变靠近面板且最大值接近10%的限值,实践中应重点关注靠近面板的筋材长期性能变化对加筋土挡墙变形和稳定性影响。
    Abstract: By analyzing the existing creep test results and creep properties of geosynthetics, a constitutive model for reinforcement considering creep and temperature is estublished. Using the 2D-thermal transfer control equation, the finite difference formula is proposed to calculate the temperature in the geosynthetics-reinforced soil (GRS) retaining wall, and then the lateral deformations of the face of GRS wall and the maximum reinforcement strains are determined via the calculated temperature and the constitutive model. Subsequently, a comprehensive study is carried out to investigate the effects of the initial temperature, temperature amplitude, vertical spacing of reinforcement, surcharge, in-frictional angle and thermal conductivity of backfills on the deformation and reinforcement strains. The results show that the elevated temperature after construction causes the significant increase of the lateral deformations of face and reinforcement strains, and then the variation of deformation decreases with the elapsed time. Increasing the initial temperature induces the remarkable increase in the lateral deformation at the very beginning, whereas the long-term deformation increases with the increase of the temperature amplitude. Increasing the surcharge on the top surface or vertical spacing, or reducing the in-frictional angle of backfills results in obvious increase of the lateral deformations. In addition, the thermal conductivity of backfills has small effects on the lateral deformations of face and the maximum reinforcement strains. Under the action of cyclic ambient temperature, the ratio of the maximum lateral deformation to the wall height, δmax/H, falls in the range of 0.9% to 1.5%, and the maximum reinforcement strains, which occurr adjacent to the face of the retaining wall, reach almost 10% of the limited value. Thus, it is necessary to pay more attention to the effects of the long-term properties of reinforcement near the wall face on the deformation and stability of the GRS walls.
  • 图  1   特定温度下土工合成材料蠕变特性示意图

    Figure  1.   Schematic diagram of creep properties of geosynthetics at specified temperature

    图  2   加筋土挡墙及有限差分网格划分图

    Figure  2.   Schematic diagram of GRS retaining wall and meshing grid for finite difference method

    图  3   荷载P=50%Pult时格栅应变预测值与试验结果对比

    Figure  3.   Comparison between predicted creep strains and test values

    图  4   不同高度处挡墙面板变形随时间和温度的变化

    Figure  4.   Variation of deformation at different heights with elapsed time and ambient temperature

    图  5   h1=3 m处距面板背部不同距离处筋材应变和温度变化

    Figure  5.   Variation of reinforcement strain and temperature at different locations from back of face for h1=3 m

    图  6   初始温度T0对挡墙面板变形和筋材最大应变的影响

    Figure  6.   Influences of initial temperature T0 on lateral deformation of face of retaining wall and maximum strain of geogrid

    图  7   环境温度幅值A0对挡墙变形和筋材最大应变的影响

    Figure  7.   Influences of temperature amplitude A0 on lateral deformation of face of retaining wall and maximum strain of geogrid

    图  8   墙顶超载qa对挡墙面板水平位移影响

    Figure  8.   Influences of surcharge qa on lateral deformation of face of retaining wall

    图  9   筋材层间距Sv对挡墙面板水平位移的影响

    Figure  9.   Influences of spacing Sv on lateral deformation of face of retaining wall

    图  10   填土内摩擦角φ对挡墙面板水平位移的影响

    Figure  10.   Influences of frictional angle φ on lateral deformation of face of retaining wall

    图  11   填土导热率λ对挡墙面板水平位移的影响

    Figure  11.   Influences of thermal conductivity λ on lateral deformation of face of retaining wall

  • [1]

    KOERNER R M. Design with Geosynthetics[M]. 5th ed. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 2010.

    [2] 铁路路基支挡结构设计规范: TB 10025—2019[S]. 北京: 中国铁道出版社, 2019.

    Code for Design of Retaining Structures of Railway Earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019, (in Chinese)

    [3]

    KOERNER R M, et al. A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2013, 40: 20-27. doi: 10.1016/j.geotexmem.2013.06.001

    [4]

    FHWA-NHI-10-024. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes: Volume Ⅰ[S]. Washington D C: Federal Highway Administration and Department of Transportation, 2009.

    [5]

    AASHTO. LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings[S]. Washington D C: AASHTO, 2009.

    [6]

    NCMA. Design Manual for Segmental Retaining Walls[S]. Washington D C: National Concrete Masonry Association, 2009.

    [7]

    GOURD J P, RATEL A, DELMAS P. Design of fabric retaining walls: the displacements method[C]// Third International Conference on Geotextiles and Geomembranes. Vienna, 1986: 289-294.

    [8]

    WU J T. Design and Construction of Low-Cost Retaining Walls: The Next Generation in Technology[R]. Colorado Transportation Institute, Denver, CO., 1994.

    [9]

    JEWELL R A, MILLIGAN G W. Deformation calculation for reinforced soil walls[C]// International Conference on Soil Mechanics and Foundation Engineering, 1989: 1259-1262.

    [10]

    WU J, PHAM T. An analytical model for calculating lateral movement of a geosynthetic-reinforced soil (GRS) wall with modular block facing[J]. International Journal of Geotechnical Engineering, 2010, 4(4): 527-535. doi: 10.3328/IJGE.2010.04.04.527-535

    [11]

    ADAMS T M, LILLIS C P, WU J T, et al. Vegas Mini Pier experiment and postulate of zero volume change[C]// Proc 7th Int Conf Geosynthetics Swets and Zeitlinger, Lisse, 2002: 389-394.

    [12]

    SAWICKI A. Creep of geosynthetic reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1999, 17(1): 51-65. doi: 10.1016/S0266-1144(98)00027-2

    [13]

    MURRAY R T, et al. Temperature distributions in reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 33-50.

    [14]

    CUI F, XIAO C, HAN J, et al. Effects of freeze-thaw cycles on performance of laboratory geogrid-reinforced retaining walls[J]. Geosynthetics International, 2022, https://doi.org/10.1680/jgein.21.00012.

    [15]

    SEGRESTIN P, JAILLOUX J. Temperature in soils and its effect on the ageing of synthetic materials[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 51-69.

    [16] 丁金华, 童军, 张静, 等. 环境因素对土工格栅蠕变特性的影响[J]. 岩土力学, 2012, 33(7): 2048-2054. doi: 10.3969/j.issn.1000-7598.2012.07.020

    DING Jinhua, TONG Jun, ZHANG Jing, et al. Study of influence of environmental factors on geogrid creep property[J]. Rock and Soil Mechanics, 2012, 33(7): 2048-2054. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.07.020

    [17] 肖成志, 栾茂田, 杨庆, 等. 土工格栅经验型蠕变模型及其参数试验[J]. 中国公路学报, 2006, 19(6): 19-24. doi: 10.3321/j.issn:1001-7372.2006.06.004

    XIAO Chengzhi, LUAN Maotian, YANG Qing, et al. Experiment on empirical creep model and its parameters of geogrids[J]. China Journal of Highway and Transport, 2006, 19(6): 19-24. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.06.004

    [18]

    YARIVAND A, BEHNIA C, BAKHTIYARI S, et al. Performance of geosynthetic reinforced soil bridge abutments with modular block facing under fire scenarios[J]. Computers and Geotechnics, 2017, 85: 28-40. doi: 10.1016/j.compgeo.2016.12.004

    [19]

    SRUNGERI S G, ALEKSEEV N N, KOVALENKO I A, et al. Creep behavior of geosynthetics by temperature accelerated testing[J]. Magazine of Civil Engineering, 2017, 76(8): 255-265.

    [20]

    ZHAO Y, LU Z, YAO H L, et al. A fast and precise methodology of creep master curve construction for geosynthetics based on stepped isothermal method (SIM)[J]. Geotextiles and Geomembranes, 2021, 49(4): 952-962. doi: 10.1016/j.geotexmem.2021.01.005

    [21]

    CHANTACHOT T, KONGKITKUL W, TATSUOKA F. Effects of temperature rise on load-strain-time behaviour of geogrids and simulations[J]. Geosynthetics International, 2018, 25(3): 287-303 doi: 10.1680/jgein.18.00008

    [22]

    ZHANG Z. Experimental study on the influence of temperature and confined load on the creep characteristics of geogrid[J]. Advanced Materials Research, 2014(912/913/914): 1629-1632.

    [23] 李乔一. 土工格栅蠕变特性试验研究[D]. 石家庄: 石家庄铁道大学, 2018.

    LI Qiaoyi. Creep Tension Testing of Geosynthetic[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018. (in Chinese)

    [24]

    ALLEN T M, BATHURST R J. Geosynthetic reinforcement stiffness characterization for MSE wall design[J]. Geosynthetics International, 2019, 26(6): 592-610. doi: 10.1680/jgein.19.00041

    [25]

    FINNIGAN J A. The creep behaviour of high tenacity yarns and fabrics used in civil engineering application[C]// Proceedings of the International Conference on the Use of Fabrics in Geotechnics. Paris, 1977: 305-309.

    [26]

    FINDLEY W N. 26-Year creep and recovery of poly(vinyl chloride) and polyethylene[J]. Polymer Engineering and Science, 1987, 27(8): 582-585. doi: 10.1002/pen.760270809

    [27]

    DAS B M. Creep behavior of geotextiles[C]// Proceedings of the 4th International Conference on Geotextiles. The Hague, 1990: 667-674.

    [28] 刘华北. 考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J]. 岩土工程学报, 2007, 29(6): 917-921. doi: 10.3321/j.issn:1000-4548.2007.06.022

    LIU Huabei. Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 917-921. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.022

    [29] 栾茂田, 肖成志, 杨庆, 等. 土工格栅蠕变特性的试验研究及粘弹性本构模型[J]. 岩土力学, 2005, 26(2): 187-192. doi: 10.3969/j.issn.1000-7598.2005.02.004

    LUAN Maotian, XIAO Chengzhi, YANG Qing, et al. Experimental study on creep properties and viscoelasticity constitutive relationship for geogrids[J]. Rock and Soil Mechanics, 2005, 26(2): 187-192. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.02.004

    [30]

    MONTRI D. Modeling Time-Dependent Behavior of Geogrids and Its Application to Geosynthetically Reinforced Walls[D]. USA: Dissertation of University of Delaware, 2001.

    [31] 郭军辉, 程卫国, 张滨. 土工格栅低温下蠕变特性试验研究[J]. 岩土力学, 2009, 30(10): 3009-3012. doi: 10.3969/j.issn.1000-7598.2009.10.021

    GUO Junhui, CHENG Weiguo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. Rock and Soil Mechanics, 2009, 30(10): 3009-3012. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.021

    [32]

    ZORNBERG J G, BYLER B R, KNUDSEN J W. Creep of geotextiles using time-temperature superposition methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1158-1168. [ doi: 10.1061/(ASCE)1090-0241(2004)130:11(1158)

    [33] 谢得璞. 北方寒冷地区高速公路钢桥桥面铺装层稳定性评价[D]. 沈阳: 沈阳建筑大学, 2018.

    XIE Depu. Stability Evaluation of Bridge Deck Pavement of Highway Steel Bridge in Cold Region of North China[D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)

    [34]

    XIAO C Z, et al. Case history on failure of geosynthetics-reinforced soil bridge approach retaining walls[J]. Geotextiles and Geomembranes, 2021, 49(6): 1585-1599. doi: 10.1016/j.geotexmem.2021.08.001

图(11)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回