Experimental study on laws of scale effects of shear strength of coarse-grained soils
-
摘要: 抗剪强度是评价土体稳定性的重要指标,研究缩尺效应对粗粒土抗剪强度的影响,对高土石坝工程土体强度估算有重要的理论意义和应用价值。根据前人的研究,颗粒最大粒径dmax和级配结构两部分变化是导致缩尺后试样存在缩尺效应的主要原因,其中级配结构可由级配面积S作为特征参数表示。通过改变试样的dmax和S,设计了24组不同级配试样,利用大型直剪仪对各组试样进行直剪试验,从而定量研究颗粒最大粒径和级配结构对粗粒土抗剪强度的影响规律。研究结果表明:粗粒土的抗剪强度指标黏聚力c和内摩擦角φ均表现出随着dmax增大而增大的规律,且c和φ均与dmax呈对数函数关系;黏聚力c和内摩擦角φ随着S的减小而增大,到达某一特定值后呈略微减小的趋势,并根据相应试验数据分别建立c和φ与S的关系式。最后,基于试验结果建立了考虑缩尺效应的粗粒土抗剪强度的预测模型,并用相关文献试验数据验证了该模型对不同类型粗粒土的适用性。Abstract: The shear strength is one of the important evaluation indices for the stability of soils. The investigation into the influences of the scale effects on the shear strength of coarse-grained soils has important theoretical significance and application for the strength estimation of soils in high earth-rock dam projects. According to the previous studies, the variations of the maximum particle size dmax and gradation structure can be seen as the main reasons resulting in the scale effects, and the gradation structure can be expressed by a characteristic parameter, the gradation area (S). By changing dmax or S, 24 groups of samples with different gradations of coarse-grained soils are designed. The direct shear tests on all the samples are conducted by a large-scale direct shear apparatus to quantitatively study the multiple influences of the maximum particle size and gradation structure on the shear strength of coarse-grained soils. The results show that the cohesion (c) and the internal friction angle (φ) of coarse-grained soils tend to increase with the increasing dmax, and thus a logarithmic equation relationship between c/φ and dmax is proposed. Both c and φ tend to increase with the decrease of S, and then decrease slightly after S reaches a certain level. As a consequence, an empirical relationship between c/φ and s is established based on the corresponding test results. Furthermore, a new prediction model for the shear strength of coarse-grained soils considering the scale effects is proposed, and the test results in the relevant literatures verify that the proposed model can be applied to different types of coarse-grained soils.
-
Keywords:
- coarse-grained soil /
- scale effect /
- shear strength /
- maximum particle size /
- gradation structure
-
-
表 1 级配参数和密度信息汇总表
Table 1 Summary of gradation parameters and densities of samples
编号 dmax/mm m b S ρmin/(g·cm-3) ρmin/(g·cm-3) ρ0/(g·cm-3) A1-4 40 1.0 0.6 0.539 1.905 2.163 2.106 A2-4 40 1.0 -0.2 0.350 1.815 1.994 1.955 A3-4 40 1.0 -1.0 0.273 1.750 1.959 1.913 A4-4 40 0.8 0.3 0.504 1.878 2.122 2.068 A5-4 40 0.8 -0.2 0.408 1.838 2.049 2.003 A6-4 40 0.8 -1.0 0.322 1.782 1.961 1.922 A7-4 40 0.6 0.6 0.673 1.877 2.171 2.105 A8-4 40 0.6 0.3 0.581 1.909 2.197 2.133 A9-4 40 0.6 -0.2 0.482 1.894 2.127 2.076 A10-4 40 0.4 0.6 0.749 1.857 2.152 2.086 A11-4 40 0.4 0.3 0.672 1.899 2.199 2.132 A12-4 40 0.4 -1.0 0.486 1.897 2.149 2.093 D1-4 40 1.0 0.3 0.441 1.833 2.106 2.045 D1-2 20 1.0 0.3 0.441 1.764 2.044 1.981 D1-1 10 1.0 0.3 0.441 1.641 1.977 1.899 D2-4 40 0.8 0.6 0.603 2.086 2.426 2.349 D2-2 20 0.8 0.6 0.603 1.906 2.155 2.174 D2-1 10 0.8 0.6 0.603 1.741 2.115 2.028 D3-4 40 0.6 -1.0 0.390 1.906 2.155 2.100 D3-2 20 0.6 -1.0 0.390 1.820 2.092 2.031 D3-1 10 0.6 -1.0 0.390 1.664 2.002 1.924 D4-4 40 0.4 -0.2 0.581 1.973 2.302 2.228 D4-2 20 0.4 -0.2 0.581 1.842 2.199 2.117 D4-1 10 0.4 -0.2 0.581 1.688 2.028 1.949 表 2 砂卵石料式(4)拟合结果
Table 2 Fitting results of Eq. (4) for sand pebble soils
S 黏聚力 内摩擦角 a1 /kPa ϲ0 /kPa R2 a2/(°) φ0/(°) R2 0.441 13.489 -4.067 0.937 5.764 47.927 0.958 0.603 9.017 -3.667 0.969 4.097 47.167 0.940 0.390 10.460 -4.233 0.948 6.918 47.660 0.944 0.581 11.037 10.271 0.978 4.977 43.201 0.995 表 3 砂卵石料式(5)拟合结果
Table 3 Fitting results of Eq. (5) for sand pebble soils
黏聚力拟合参数 内摩擦角拟合参数 b c1 /kPa-1 d1/kPa-1 R2 c2/((°)-1) d2/((°)-1) e R2 -1.180 0.027 -0.020 0.936 0.017 0.041 6.832 0.959 表 4 砂卵石料式(6)拟合结果
Table 4 Fitting results of Eq. (6) for sand pebble soils
黏聚力拟合参数 数值 内摩擦角拟合参数 数值 a1 /kPa 14.506 a2 /(°) 4.916 b -6.11 c2 /(°)-1 0.020 c1/kPa-1 0.572 d2/(°)-1 0.053 d1/kPa-1 -0.518 e 6.142 R2 0.865 R2 0.894 表 5 堆石料试验数据拟合汇总
Table 5 Fitting results of rockfill materials
原维数 dmax m b S 黏聚力/kPa 内摩擦角/(°) D=2.3 60 0.7 0.003 0.512 185.808 39.68 40 0.7 0.003 0.512 177.727 39.40 20 0.7 0.003 0.512 153.650 35.58 D=2.6 60 0.4 0.02 0.686 204.094 41.41 40 0.4 0.02 0.686 200.382 41.14 20 0.4 0.02 0.686 193.541 40.10 D=2.7 60 0.3 0.09 0.779 209.852 41.72 40 0.3 0.09 0.779 197.401 39.78 20 0.3 0.09 0.779 202.085 40.07 表 6 堆石料试验模拟结果
Table 6 Fitting results of rockfill materials
黏聚力拟合参数 数值 内摩擦角拟合参数 数值 a1 /kPa 12.381 a2 /(°) 2.191 b 1289.72 c2 /(°)-1) 0.361 c1/kPa-1 2.592 d2 /((°)-1) -0.335 d1/kPa-1 3.787 e 0.016 R2 0.866 R2 0.915 -
[1] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 2003. GUO Qing-guo. Engineering Properties and Application of Coarse-Grained Soil[M]. Beijing: China Water Power Press, 2003. (in Chinese)
[2] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. China Planning Press: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[3] 周伟, 马刚, 刘嘉英, 等. 高堆石坝筑坝材料宏细观变形分析研究进展[J]. 中国科学: 技术科学, 2018, 48(10): 1068-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810006.htm ZHOU Wei, MA Gang, LIU Jiaying, et al. Review of macro-and mesoscopic analysis on rockfill materials in high dams[J]. Scientia Sinica: Technologica, 2018, 48(10): 1068-1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810006.htm
[4] 武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm WU Liqiang, ZHU Sheng, ZHANG Xiaohua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm
[5] MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43. doi: 10.1061/JSFEAQ.0000958
[6] DEAN MARSCHI N, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735
[7] VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)
[8] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. doi: 10.11779/CJGE201902002 KONG Xianjing, NING Fanwei, LIU Jingmao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) doi: 10.11779/CJGE201902002
[9] 孟宪麒, 史彦文. 石头河土石坝砂卵石抗剪强度[J]. 岩土工程学报, 1983, 5(1): 90-101. doi: 10.3321/j.issn:1000-4548.1983.01.008 MENG Xianqi, SHI Yanwen. Shear strength of sandy-gravels in Shitouhe River dam[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 90-101. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.008
[10] 翁厚洋, 朱俊高, 余挺, 等. 粗粒料缩尺效应研究现状与趋势[J]. 河海大学学报(自然科学版), 2009, 37(4): 425-429. doi: 10.3876/j.issn.1000-1980.2009.04.013 WENG Houyang, ZHU Jungao, YU Ting, et al. Status quo and tendency of studies on scale effects of coarse-grained materials[J]. Journal of Hohai University (Natural Sciences), 2009, 37(4): 425-429. (in Chinese) doi: 10.3876/j.issn.1000-1980.2009.04.013
[11] 郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42. doi: 10.3969/j.issn.1000-7709.2001.02.012 LI Nenghui, ZHU Tie, MI Zhankuan. Strength and deformation properties of transition zone material of Xiaolangdi Dam and scale effect[J]. Hydroelectric Energy, 2001, 19(2): 39-42. (in Chinese) doi: 10.3969/j.issn.1000-7709.2001.02.012
[12] 李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm LI Chong, HE Changrong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained meterials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm
[13] LEE D M. The Angles of Friction of Granular Fills[D]. Cambridge: University of Cambridge, 1992.
[14] SUITS L D, SHEAHAN T C, HU W, et al. Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34(3): 103095. doi: 10.1520/GTJ103095
[15] 魏厚振, 汪稔, 胡明鉴, 等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 2008, 29(1): 48-51, 57. doi: 10.3969/j.issn.1000-7598.2008.01.010 WEI Houzhen, WANG Ren, HU Mingjian, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48-51, 57. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.010
[16] 李振, 邢义川. 干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J]. 岩土力学, 2006, 27(12): 2255-2260. doi: 10.3969/j.issn.1000-7598.2006.12.032 LI Zhen, XING Yichuan. Effects of dry density and percent fines on shearing strength of sandy cobble and broken stone[J]. Rock and Soil Mechanics, 2006, 27(12): 2255-2260. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.032
[17] ZHU J G, GUO W L, WEN Y F, et al. New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155. doi: 10.1061/(ASCE)GM.1943-5622.0001082
[18] 吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767-1772. doi: 10.11779/CJGE201909023 WU Erlu, ZHU Jungao, GUO Wanli, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. (in Chinese) doi: 10.11779/CJGE201909023
[19] 吴二鲁, 朱俊高, 郭万里, 等. 基于级配方程的粗粒料压实特性试验研究[J]. 岩土力学, 2020, 41(1): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001026.htm WU Erlu, ZHU Jungao, GUO Wanli, et al. Experimental study of compaction characteristics of coarse-grained soil based on gradation equation[J]. Rock and Soil Mechanics, 2020, 41(1): 214-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001026.htm
[20] 郭万里, 朱俊高, 温彦锋. 对粗粒料4种级配缩尺方法的统一解释[J]. 岩土工程学报, 2016, 38(8): 1473-1480. doi: 10.11779/CJGE201608015 GUO Wanli, ZHU Jungao, WEN Yanfeng. Unified description for four grading scale methods for coarse aggregate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1473-1480. (in Chinese) doi: 10.11779/CJGE201608015
[21] 王永明, 朱晟, 任金明, 等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013, 34(6): 1799-1806, 1823. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm WANG Yongming, ZHU Sheng, REN Jinming, et al. Research on scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2013, 34(6): 1799-1806, 1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm
[22] 武利强, 叶飞, 林万青. 堆石料力学特性缩尺效应试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 141-145. doi: 10.11779/CJGE2020S2025 WU Liqiang, YE Fei, LIN Wanqing. Experimental study on scale effect of mechanical properties of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 141-145. (in Chinese) doi: 10.11779/CJGE2020S2025
-
期刊类型引用(1)
1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看
其他类型引用(5)