• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粗粒土抗剪强度的缩尺效应规律试验研究

蒋明杰, 吉恩跃, 王天成, 栗书亚, 朱俊高, 梅国雄

蒋明杰, 吉恩跃, 王天成, 栗书亚, 朱俊高, 梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究[J]. 岩土工程学报, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
引用本文: 蒋明杰, 吉恩跃, 王天成, 栗书亚, 朱俊高, 梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究[J]. 岩土工程学报, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
Citation: JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102

粗粒土抗剪强度的缩尺效应规律试验研究  English Version

基金项目: 

国家自然科学基金项目 51878185

国家自然科学基金项目 52178321

国家自然科学基金项目 52108309

国家自然科学基金委员会-雅砻江流域水电开发有限公司雅砻江联合基金项目 U1865104

长江水科学研究联合基金重点支持项目 U2040221

广东省海洋土木工程重点实验室开放基金项目 LMCE202103

水利部土石坝破坏机理与防控技术重点实验室开放基金项目 2020ZDK003

广西省自然科学基金项目 2021GXNSFBA196091

详细信息
    作者简介:

    蒋明杰(1990—),男,湖南邵阳人,讲师,主要从事粗粒土力学特性等方面科研。E-mail: 20180121@gxu.edu.cn

    通讯作者:

    栗书亚, lishuya@st.gxu.edu.cn

  • 中图分类号: TU441

Experimental study on laws of scale effects of shear strength of coarse-grained soils

  • 摘要: 抗剪强度是评价土体稳定性的重要指标,研究缩尺效应对粗粒土抗剪强度的影响,对高土石坝工程土体强度估算有重要的理论意义和应用价值。根据前人的研究,颗粒最大粒径dmax和级配结构两部分变化是导致缩尺后试样存在缩尺效应的主要原因,其中级配结构可由级配面积S作为特征参数表示。通过改变试样的dmaxS,设计了24组不同级配试样,利用大型直剪仪对各组试样进行直剪试验,从而定量研究颗粒最大粒径和级配结构对粗粒土抗剪强度的影响规律。研究结果表明:粗粒土的抗剪强度指标黏聚力c和内摩擦角φ均表现出随着dmax增大而增大的规律,且cφ均与dmax呈对数函数关系;黏聚力c和内摩擦角φ随着S的减小而增大,到达某一特定值后呈略微减小的趋势,并根据相应试验数据分别建立cφS的关系式。最后,基于试验结果建立了考虑缩尺效应的粗粒土抗剪强度的预测模型,并用相关文献试验数据验证了该模型对不同类型粗粒土的适用性。
    Abstract: The shear strength is one of the important evaluation indices for the stability of soils. The investigation into the influences of the scale effects on the shear strength of coarse-grained soils has important theoretical significance and application for the strength estimation of soils in high earth-rock dam projects. According to the previous studies, the variations of the maximum particle size dmax and gradation structure can be seen as the main reasons resulting in the scale effects, and the gradation structure can be expressed by a characteristic parameter, the gradation area (S). By changing dmax or S, 24 groups of samples with different gradations of coarse-grained soils are designed. The direct shear tests on all the samples are conducted by a large-scale direct shear apparatus to quantitatively study the multiple influences of the maximum particle size and gradation structure on the shear strength of coarse-grained soils. The results show that the cohesion (c) and the internal friction angle (φ) of coarse-grained soils tend to increase with the increasing dmax, and thus a logarithmic equation relationship between c/φ and dmax is proposed. Both c and φ tend to increase with the decrease of S, and then decrease slightly after S reaches a certain level. As a consequence, an empirical relationship between c/φ and s is established based on the corresponding test results. Furthermore, a new prediction model for the shear strength of coarse-grained soils considering the scale effects is proposed, and the test results in the relevant literatures verify that the proposed model can be applied to different types of coarse-grained soils.
  • 图  1   不同粒组砂卵石料样本

    Figure  1.   Sandy pebble samples of different grain groups

    图  2   试验粗粒土级配曲线

    Figure  2.   Gradation curves of experimental coarse-grained soils

    图  3   级配曲线面积示意图

    Figure  3.   Schematic diagram of gradation curve area

    图  4   黏聚力与颗粒最大粒径的关系

    Figure  4.   Relationship between internal maximum particle size and cohesion

    图  5   内摩擦角与颗粒最大粒径的关系

    Figure  5.   Relationship between maximum particle size and internal friction angle

    图  6   黏聚力与级配面积关系

    Figure  6.   Relationship between gradation curve area and cohesion

    图  7   内摩擦角与级配面积关系

    Figure  7.   Relationship between gradation curve area and internal friction

    图  8   砂卵石抗剪强度指标的实测值与计算值

    Figure  8.   Measured and calculated values of shear strength parameters of sandy pebble soils

    图  9   文献[22]堆石料级配曲线

    Figure  9.   Gradation curves of rockfill materials in Reference [22]

    图  10   堆石料抗剪强度指标的实测值与计算值

    Figure  10.   Measured and calculated values of shear strength parameters of rockfill materials

    图  11   堆石料抗剪强度指标的实测值与预测值

    Figure  11.   Measured and predicted values of shear strength parameters of rockfill materials

    表  1   级配参数和密度信息汇总表

    Table  1   Summary of gradation parameters and densities of samples

    编号 dmax/mm m b S ρmin/(g·cm-3) ρmin/(g·cm-3) ρ0/(g·cm-3)
    A1-4 40 1.0 0.6 0.539 1.905 2.163 2.106
    A2-4 40 1.0 -0.2 0.350 1.815 1.994 1.955
    A3-4 40 1.0 -1.0 0.273 1.750 1.959 1.913
    A4-4 40 0.8 0.3 0.504 1.878 2.122 2.068
    A5-4 40 0.8 -0.2 0.408 1.838 2.049 2.003
    A6-4 40 0.8 -1.0 0.322 1.782 1.961 1.922
    A7-4 40 0.6 0.6 0.673 1.877 2.171 2.105
    A8-4 40 0.6 0.3 0.581 1.909 2.197 2.133
    A9-4 40 0.6 -0.2 0.482 1.894 2.127 2.076
    A10-4 40 0.4 0.6 0.749 1.857 2.152 2.086
    A11-4 40 0.4 0.3 0.672 1.899 2.199 2.132
    A12-4 40 0.4 -1.0 0.486 1.897 2.149 2.093
    D1-4 40 1.0 0.3 0.441 1.833 2.106 2.045
    D1-2 20 1.0 0.3 0.441 1.764 2.044 1.981
    D1-1 10 1.0 0.3 0.441 1.641 1.977 1.899
    D2-4 40 0.8 0.6 0.603 2.086 2.426 2.349
    D2-2 20 0.8 0.6 0.603 1.906 2.155 2.174
    D2-1 10 0.8 0.6 0.603 1.741 2.115 2.028
    D3-4 40 0.6 -1.0 0.390 1.906 2.155 2.100
    D3-2 20 0.6 -1.0 0.390 1.820 2.092 2.031
    D3-1 10 0.6 -1.0 0.390 1.664 2.002 1.924
    D4-4 40 0.4 -0.2 0.581 1.973 2.302 2.228
    D4-2 20 0.4 -0.2 0.581 1.842 2.199 2.117
    D4-1 10 0.4 -0.2 0.581 1.688 2.028 1.949
    下载: 导出CSV

    表  2   砂卵石料式(4)拟合结果

    Table  2   Fitting results of Eq. (4) for sand pebble soils

    S 黏聚力 内摩擦角
    a1 /kPa ϲ0 /kPa R2 a2/(°) φ0/(°) R2
    0.441 13.489 -4.067 0.937 5.764 47.927 0.958
    0.603 9.017 -3.667 0.969 4.097 47.167 0.940
    0.390 10.460 -4.233 0.948 6.918 47.660 0.944
    0.581 11.037 10.271 0.978 4.977 43.201 0.995
    下载: 导出CSV

    表  3   砂卵石料式(5)拟合结果

    Table  3   Fitting results of Eq. (5) for sand pebble soils

    黏聚力拟合参数 内摩擦角拟合参数
    b c1 /kPa-1 d1/kPa-1 R2 c2/((°)-1) d2/((°)-1) e R2
    -1.180 0.027 -0.020 0.936 0.017 0.041 6.832 0.959
    下载: 导出CSV

    表  4   砂卵石料式(6)拟合结果

    Table  4   Fitting results of Eq. (6) for sand pebble soils

    黏聚力拟合参数 数值 内摩擦角拟合参数 数值
    a1 /kPa 14.506 a2 /(°) 4.916
    b -6.11 c2 /(°)-1 0.020
    c1/kPa-1 0.572 d2/(°)-1 0.053
    d1/kPa-1 -0.518 e 6.142
    R2 0.865 R2 0.894
    下载: 导出CSV

    表  5   堆石料试验数据拟合汇总

    Table  5   Fitting results of rockfill materials

    原维数 dmax m b S 黏聚力/kPa 内摩擦角/(°)
    D=2.3 60 0.7 0.003 0.512 185.808 39.68
    40 0.7 0.003 0.512 177.727 39.40
    20 0.7 0.003 0.512 153.650 35.58
    D=2.6 60 0.4 0.02 0.686 204.094 41.41
    40 0.4 0.02 0.686 200.382 41.14
    20 0.4 0.02 0.686 193.541 40.10
    D=2.7 60 0.3 0.09 0.779 209.852 41.72
    40 0.3 0.09 0.779 197.401 39.78
    20 0.3 0.09 0.779 202.085 40.07
    下载: 导出CSV

    表  6   堆石料试验模拟结果

    Table  6   Fitting results of rockfill materials

    黏聚力拟合参数 数值 内摩擦角拟合参数 数值
    a1 /kPa 12.381 a2 /(°) 2.191
    b 1289.72 c2 /(°)-1) 0.361
    c1/kPa-1 2.592 d2 /((°)-1) -0.335
    d1/kPa-1 3.787 e 0.016
    R2 0.866 R2 0.915
    下载: 导出CSV
  • [1] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 2003.

    GUO Qing-guo. Engineering Properties and Application of Coarse-Grained Soil[M]. Beijing: China Water Power Press, 2003. (in Chinese)

    [2] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    China Planning Press: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [3] 周伟, 马刚, 刘嘉英, 等. 高堆石坝筑坝材料宏细观变形分析研究进展[J]. 中国科学: 技术科学, 2018, 48(10): 1068-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810006.htm

    ZHOU Wei, MA Gang, LIU Jiaying, et al. Review of macro-and mesoscopic analysis on rockfill materials in high dams[J]. Scientia Sinica: Technologica, 2018, 48(10): 1068-1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810006.htm

    [4] 武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm

    WU Liqiang, ZHU Sheng, ZHANG Xiaohua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm

    [5]

    MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43. doi: 10.1061/JSFEAQ.0000958

    [6]

    DEAN MARSCHI N, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735

    [7]

    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)

    [8] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. doi: 10.11779/CJGE201902002

    KONG Xianjing, NING Fanwei, LIU Jingmao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) doi: 10.11779/CJGE201902002

    [9] 孟宪麒, 史彦文. 石头河土石坝砂卵石抗剪强度[J]. 岩土工程学报, 1983, 5(1): 90-101. doi: 10.3321/j.issn:1000-4548.1983.01.008

    MENG Xianqi, SHI Yanwen. Shear strength of sandy-gravels in Shitouhe River dam[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 90-101. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.008

    [10] 翁厚洋, 朱俊高, 余挺, 等. 粗粒料缩尺效应研究现状与趋势[J]. 河海大学学报(自然科学版), 2009, 37(4): 425-429. doi: 10.3876/j.issn.1000-1980.2009.04.013

    WENG Houyang, ZHU Jungao, YU Ting, et al. Status quo and tendency of studies on scale effects of coarse-grained materials[J]. Journal of Hohai University (Natural Sciences), 2009, 37(4): 425-429. (in Chinese) doi: 10.3876/j.issn.1000-1980.2009.04.013

    [11] 郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42. doi: 10.3969/j.issn.1000-7709.2001.02.012

    LI Nenghui, ZHU Tie, MI Zhankuan. Strength and deformation properties of transition zone material of Xiaolangdi Dam and scale effect[J]. Hydroelectric Energy, 2001, 19(2): 39-42. (in Chinese) doi: 10.3969/j.issn.1000-7709.2001.02.012

    [12] 李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

    LI Chong, HE Changrong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained meterials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

    [13]

    LEE D M. The Angles of Friction of Granular Fills[D]. Cambridge: University of Cambridge, 1992.

    [14]

    SUITS L D, SHEAHAN T C, HU W, et al. Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34(3): 103095. doi: 10.1520/GTJ103095

    [15] 魏厚振, 汪稔, 胡明鉴, 等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 2008, 29(1): 48-51, 57. doi: 10.3969/j.issn.1000-7598.2008.01.010

    WEI Houzhen, WANG Ren, HU Mingjian, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48-51, 57. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.010

    [16] 李振, 邢义川. 干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J]. 岩土力学, 2006, 27(12): 2255-2260. doi: 10.3969/j.issn.1000-7598.2006.12.032

    LI Zhen, XING Yichuan. Effects of dry density and percent fines on shearing strength of sandy cobble and broken stone[J]. Rock and Soil Mechanics, 2006, 27(12): 2255-2260. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.032

    [17]

    ZHU J G, GUO W L, WEN Y F, et al. New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155. doi: 10.1061/(ASCE)GM.1943-5622.0001082

    [18] 吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767-1772. doi: 10.11779/CJGE201909023

    WU Erlu, ZHU Jungao, GUO Wanli, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. (in Chinese) doi: 10.11779/CJGE201909023

    [19] 吴二鲁, 朱俊高, 郭万里, 等. 基于级配方程的粗粒料压实特性试验研究[J]. 岩土力学, 2020, 41(1): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001026.htm

    WU Erlu, ZHU Jungao, GUO Wanli, et al. Experimental study of compaction characteristics of coarse-grained soil based on gradation equation[J]. Rock and Soil Mechanics, 2020, 41(1): 214-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001026.htm

    [20] 郭万里, 朱俊高, 温彦锋. 对粗粒料4种级配缩尺方法的统一解释[J]. 岩土工程学报, 2016, 38(8): 1473-1480. doi: 10.11779/CJGE201608015

    GUO Wanli, ZHU Jungao, WEN Yanfeng. Unified description for four grading scale methods for coarse aggregate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1473-1480. (in Chinese) doi: 10.11779/CJGE201608015

    [21] 王永明, 朱晟, 任金明, 等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013, 34(6): 1799-1806, 1823. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm

    WANG Yongming, ZHU Sheng, REN Jinming, et al. Research on scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2013, 34(6): 1799-1806, 1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm

    [22] 武利强, 叶飞, 林万青. 堆石料力学特性缩尺效应试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 141-145. doi: 10.11779/CJGE2020S2025

    WU Liqiang, YE Fei, LIN Wanqing. Experimental study on scale effect of mechanical properties of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 141-145. (in Chinese) doi: 10.11779/CJGE2020S2025

  • 期刊类型引用(1)

    1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看

    其他类型引用(5)

图(11)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-01-20
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回