Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑参数空间变异性的隧道结构变形分析简化方法

张晋彰, 黄宏伟, 张东明, 方国光, 唐冲

张晋彰, 黄宏伟, 张东明, 方国光, 唐冲. 考虑参数空间变异性的隧道结构变形分析简化方法[J]. 岩土工程学报, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
引用本文: 张晋彰, 黄宏伟, 张东明, 方国光, 唐冲. 考虑参数空间变异性的隧道结构变形分析简化方法[J]. 岩土工程学报, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
Citation: ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013

考虑参数空间变异性的隧道结构变形分析简化方法  English Version

基金项目: 

国家自然科学基金项目 52130805

国家自然科学基金项目 52022070

详细信息
    作者简介:

    张晋彰(1994—),男,博士研究生,主要从事地层变异和参数空间变异对隧道结构变形的影响方面的研究工作。E-mail: zhangjz@tongji.edu.cn

    通讯作者:

    黄宏伟, E-mail: huanghw@tongji.edu.cn

  • 中图分类号: TU43;U45

Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties

  • 摘要: 土体参数具有空间变异性是被广泛接受的,而这种变异性对岩土中结构性能有着重要的影响。随机场理论是一种常用的用来模拟土体参数空间变异性的方法。基于随机场理论,以土体弹性模量的空间变异性为切入点,采用蒙特卡罗方法和有限差分模拟计算相结合的方法,开展隧道水平收敛的随机分析。在大量蒙特卡罗计算基础上,提出了3种简单易用的简化考虑空间变异性的方法,分别为参数折减法、放大系数法和可靠度分项系数标定法。经过对计算结果的统计分析,给出了在土体弹性模量的水平、竖向相关距离及其变异系数的不同组合下3种简化考虑方法的建议值。提出的简化方法可以为空间变异性研究应用到实际工程提供一定的参考。
    Abstract: The spatial variability of soil properties is widely accepted, and the response of a geo-structure can be significantly affected by the spatial variability of the surrounding soil mass. The random field theory is a popularly used method to simulate the spatial variability of soil properties. The stochastic analysis of horizontal convergence of tunnel is carried out using the random field difference method considering the spatial variability of Young's modulus. The random field difference method is combined with the Monte Carlo method and finite difference simulation based on random field theory. A large number of Monte Carlo simulations are adopted in the proposed random field difference method. Meanwhile, three simple and easy-to-use methods for the spatial variability of soil are proposed: reduction factor method, amplification factor method and reliability partial factor calibration method. Based on the statistical analysis of the calculated results, the suggested values of three simplified analysis methods under different combinations of the horizontal scale of fluctuation, the vertical scale of fluctuation and the coefficient of variation are given. This study may provide references for the application of spatial variability research to practical geotechnical engineering.
  • 图  1   隧道开挖有限差分模型

    Figure  1.   Finite difference model of tunnel

    图  2   隧道水平收敛的收敛趋势统计

    Figure  2.   Converging trend of ΔDh statistics

    图  3   场地分层土弹性模量云图

    Figure  3.   E for site-specific case

    图  4   隧道收敛工程实测数据计算结果直方图对比

    Figure  4.   Comparison of histogram of ΔDh

    图  5   弹性模量和隧道水平收敛关系

    Figure  5.   Relationship between Young's modulus and ΔDh

    图  6   不同空间变异性条件下弹性模量折减系数分布图

    Figure  6.   Reduction factors incorporating different randomness levels

    图  7   不同空间变异性条件下隧道收敛放大系数分布图

    Figure  7.   Amplification factors incorporating different randomness levels

    图  8   不同空间变异性条件下隧道收敛可靠度分项系数分布图

    Figure  8.   Values of partial factors of reliability incorporating different randomness levels

    图  9   不同埋深对隧道收敛的影响

    Figure  9.   Effects of tunnel depth on horizontal convergence

    表  1   数值模型中接触面参数表

    Table  1   Parameters of interface in numerical model

    对应节点层 抗拉刚度/(GPa·m-1) 抗压刚度/(GPa·m-1) 剪切刚度(GPa·m-1)
    2,3 5.40 0 0
    6,7 5.40 120 10000
    1,4,5 0.08 0 0
    下载: 导出CSV

    表  2   模拟工况设置

    Table  2   Case design of random field

    工况 δh/m δv/m δh/δv δh/D δv/D
    ANI-1 60 1.5 40.00 9.68 0.24
    ANI-2 60 3.1 19.35 9.68 0.50
    ANI-3 60 6.2 9.68 9.68 1.00
    ANI-4 60 15 4.00 9.68 2.42
    ANI-5 60 30 2.00 9.68 4.84
    ANI-6 60 60 1.00 9.68 9.68
    ANI-7 90 1.5 60.00 14.52 0.24
    ANI-8 29.03 1.5 19.35 4.68 0.24
    ANI-9 14.52 1.5 9.68 2.34 0.24
    ANI-10 6 1.5 4.00 0.97 0.24
    ANI-11 3 1.5 2.00 0.48 0.24
    ANI-12 1.5 1.5 1.00 0.24 0.24
    下载: 导出CSV

    表  3   均质模型工况的设置和计算结果

    Table  3   Case design and results of deterministic analysis

    E/MPa 2.5 5 7.5 10 15 20
    ΔDh /mm 86.18 52.82 38.49 30.43 21.75 17.24
    E/MPa 25 30 35 40 45 50
    ΔDh /mm 14.31 12.17 10.76 9.71 8.73 7.97
    E/MPa 55 60 65 70 80 90
    ΔDh /mm 7.31 6.76 6.25 5.80 5.09 4.49
    E/MPa 100 110 120 130
    ΔDh /mm 4.03 3.63 3.29 3.01
    下载: 导出CSV

    表  4   竖向相关距离变化下的弹性模量折减系数(δh=60 m)

    Table  4   Reduction factors of E with δv (δh=60 m)

    置信区间 COV 竖向相关距离δv/m
    1.5 3.1 6.2 15 30 60
    95% 0.1 0.88 0.86 0.85 0.83 0.79 0.80
    0.3 0.73 0.68 0.65 0.59 0.53 0.55
    0.5 0.60 0.55 0.54 0.42 0.36 0.34
    99% 0.1 0.86 0.84 0.84 0.80 0.75 0.77
    0.3 0.69 0.62 0.55 0.52 0.48 0.46
    0.5 0.54 0.49 0.45 0.36 0.31 0.29
    下载: 导出CSV

    表  5   水平相关距离变化下的弹性模量折减系数(δv=1.5 m)

    Table  5   Reduction factors of E with δh (δv=1.5 m)

    置信区间 COV 水平相关距离δh/m
    1.5 3 6 14.52 29.03 60 90
    95% 0.1 0.91 0.89 0.89 0.88 0.87 0.88 0.88
    0.3 0.81 0.77 0.74 0.75 0.74 0.73 0.72
    0.5 0.72 0.68 0.62 0.59 0.58 0.60 0.59
    99% 0.1 0.90 0.89 0.87 0.86 0.86 0.86 0.87
    0.3 0.79 0.72 0.66 0.72 0.70 0.69 0.69
    0.5 0.69 0.62 0.58 0.53 0.46 0.54 0.54
    下载: 导出CSV

    表  6   竖向相关距离变化下的隧道收敛放大系数(δh=60 m)

    Table  6   Amplification factors of ΔDh with δv (δh=60 m)

    置信区间 COV 竖向相关距离δv/m
    1.5 3.1 6.2 15 30 60
    95% 0.1 1.07 1.09 1.10 1.13 1.18 1.16
    0.3 1.26 1.34 1.38 1.52 1.64 1.59
    0.5 1.50 1.61 1.64 2.00 2.31 2.41
    99% 0.1 1.09 1.11 1.12 1.17 1.23 1.20
    0.3 1.32 1.44 1.61 1.67 1.81 1.88
    0.5 1.64 1.76 1.89 2.30 2.65 2.77
    下载: 导出CSV

    表  7   水平相关距离变化下的隧道收敛放大系数(δv=1.5 m)

    Table  7   Amplification factor of ΔDh with δh (δv=1.5 m)

    置信区间 COV 水平相关距离δh/m
    1.5 3 6 14.52 29.03 60 90
    95% 0.1 1.04 1.06 1.06 1.08 1.08 1.07 1.08
    0.3 1.15 1.20 1.24 1.23 1.25 1.26 1.27
    0.5 1.28 1.34 1.45 1.50 1.53 1.50 1.50
    99% 0.1 1.05 1.07 1.08 1.09 1.09 1.09 1.08
    0.3 1.18 1.27 1.37 1.27 1.30 1.32 1.32
    0.5 1.32 1.44 1.54 1.64 1.85 1.64 1.62
    下载: 导出CSV

    表  8   竖向相关距离变化下可靠度分项系数标定(δh=60 m)

    Table  8   Partial factors of reliability with δv (δh=60 m)

    竖向相关距离/m COV=0.1 COV=0.3 COV=0.5
    β=2.7 β=3.2 β=3.7 β=2.7 β=3.2 β=3.7 β=2.7 β=3.2 β=3.7
    1.5 1.11 1.13 1.15 1.34 1.41 1.47 1.69 1.82 1.97
    3.1 1.13 1.15 1.18 1.50 1.60 1.72 1.88 2.07 2.29
    6.2 1.14 1.17 1.20 1.62 1.76 1.92 2.03 2.28 2.56
    15 1.19 1.23 1.26 1.76 1.94 2.14 2.52 2.94 3.43
    30 1.26 1.31 1.36 1.99 2.24 2.53 3.02 3.64 4.40
    60 1.27 1.32 1.38 2.01 2.27 2.57 3.32 4.08 5.00
    下载: 导出CSV

    表  9   水平相关距离变化下可靠度分项系数标定(δv=1.5 m)

    Table  9   Partial factors of reliability with δh (δv=1.5 m)

    竖向相关距离/m COV=0.1 COV=0.3 COV=0.5
    β=2.7 β=3.2 β=3.7 β=2.7 β=3.2 β=3.7 β=2.7 β=3.2 β=3.7
    1.5 1.06 1.07 1.08 1.19 1.22 1.26 1.37 1.43 1.49
    3 1.08 1.09 1.10 1.28 1.33 1.38 1.45 1.53 1.61
    6 1.09 1.11 1.12 1.34 1.40 1.46 1.59 1.70 1.82
    14.5 1.10 1.12 1.14 1.35 1.41 1.48 1.70 1.85 2.00
    29 1.11 1.13 1.15 1.34 1.41 1.47 1.73 1.88 2.04
    60 1.11 1.13 1.15 1.34 1.41 1.47 1.69 1.82 1.97
    90 1.11 1.13 1.15 1.36 1.42 1.50 1.67 1.81 1.95
    下载: 导出CSV

    表  10   不同埋深下3种方法结果对比(δh=60 m, δv=1.5 m)

    Table  10   Comparison of results of three methods at different depths (δh=60 m, δv=1.5 m)

    置信区间 方法 浅埋 中埋 深埋 浅埋误差/% 深埋误差/%
    95% 参数折减法 0.76 0.73 0.77 4.10 5.48
    放大系数法 1.26 1.26 1.25 0 0.79
    可靠度分项系数法 β=2.7 1.36 1.34 1.33 1.49 0.75
    β=3.2 1.43 1.41 1.40 1.42 0.71
    β=3.7 1.50 1.47 1.46 2.04 0.68
    下载: 导出CSV
  • [1]

    HUANG H W, SHAO H, ZHANG D M, et al. Deformational responses of operated shield tunnel to extreme surcharge: a case study[J]. Structure and Infrastructure Engineering, 2017, 13(3): 345–360. doi: 10.1080/15732479.2016.1170156

    [2]

    HUANG H W, XIAO L, ZHANG D M, et al. Influence of spatial variability of soil Young's modulus on tunnel convergence in soft soils[J]. Engineering Geology, 2017, 228: 357–370. doi: 10.1016/j.enggeo.2017.09.011

    [3]

    PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612–624. doi: 10.1139/t99-038

    [4]

    ZHANG J Z, HUANG H W, ZHANG D M, et al. Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain[J]. Acta Geotechnica, 2021, 16: 3709–3724. doi: 10.1007/s11440-021-01287-6

    [5] 陶袁钦, 孙宏磊, 蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报, 2021, 43(1): 1878–1886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm

    TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 43(1): 1878–1886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm

    [6]

    ZHANG W G, HAN L, GU X, et al. Tunneling and deep excavations in spatially variable soil and rock masses: a short review[J/OL]. Underground Space, 2020: [2020-12-07]. http://doi. org/10.1016/j. undsp. 2020.03. 003.

    [7]

    VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227–1246. doi: 10.1061/AJGEB6.0000517

    [8]

    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60–72. doi: 10.1016/j.enggeo.2014.12.003

    [9] 蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900–907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900–907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    [10]

    CHING J, HU Y G, PHOON K K. Effective Young's modulus of a spatially variable soil mass under a footing[J]. Structural Safety, 2018, 73: 99–113. doi: 10.1016/j.strusafe.2018.03.004

    [11]

    LI J H, ZHOU Y, ZHANG L L, et al. Random finite element method for spudcan foundations in spatially variable soils[J]. Engineering Geology, 2016, 205: 146–155. doi: 10.1016/j.enggeo.2015.12.019

    [12]

    LUO Z, LI Y X, ZHOU S H, et al. Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes[J]. Computers and Geotechnics, 2018, 95: 16–29. doi: 10.1016/j.compgeo.2017.11.017

    [13]

    CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties[J]. Tunnelling and Underground Space Technology, 2019, 88: 276–289. doi: 10.1016/j.tust.2019.03.013

    [14]

    ZHANG J Z, HUANG H W, ZHANG D M, et al. Effect of ground surface surcharge on deformational performance of tunnel in spatially variable soil[J]. Computers and Geotechnics, 2021, 136: 104229. doi: 10.1016/j.compgeo.2021.104229

    [15] 程红战, 陈健, 胡之锋, 等. 考虑参数空间变异性的隧道下穿建筑物安全性评价[J]. 岩土工程学报, 2017, 39(增刊2): 75–78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm

    CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, et al. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 75–78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm

    [16] 王长虹, 朱合华, 徐子川, 等. 考虑岩土参数空间变异性的盾构隧道地表沉降分析[J]. 岩土工程学报, 2018, 40(2): 270–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm

    WANG Chang-hong, ZHU He-hua, XU Zi-chuan, et al. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm

    [17] 谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808–816. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808–816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    [18]

    CHING J, HU Y G. Effect of element size in random finite element analysis for effective Young's modulus[J]. Mathematical Problems in Engineering, 2016, 2016: 1–10.

    [19]

    ZHANG D M, LIU Z S, WANG R L, et al. Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay[J]. Acta Geotechnica, 2019, 14(4): 1227–1247. doi: 10.1007/s11440-018-0696-8

    [20]

    GONG W P, LUO Z, JUANG C H, et al. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays[J]. Computers and Geotechnics, 2014, 56: 69–79. doi: 10.1016/j.compgeo.2013.10.008

    [21]

    JIN D L, SHEN Z C, YUAN D J. Effect of spatial variability on disc cutters failure during TBM tunneling in hard rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4609–4621. doi: 10.1007/s00603-020-02192-2

    [22]

    HUANG Z K, PITILAKIS K, TSINIDIS G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system[J]. Tunnelling and Underground Space Technology, 2020, 98: 103341. doi: 10.1016/j.tust.2020.103341

    [23] 邵华. 上海地铁盾构隧道变形机理及无线传感方法研究[D]. 上海: 同济大学, 2018.

    SHAO Hua. Analysis of Deformation Mechanism and Wireless Sensing Method of Shield Tunnel for Shanghai Metro[D]. Shanghai: Tongji University, 2018. (in Chinese)

图(9)  /  表(10)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回