• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于加速度阵列反演循环剪应力–剪应变的积分位移方法影响

王体强, 王永志, 陈苏, 段雪锋, 袁晓铭

王体强, 王永志, 陈苏, 段雪锋, 袁晓铭. 基于加速度阵列反演循环剪应力–剪应变的积分位移方法影响[J]. 岩土工程学报, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
引用本文: 王体强, 王永志, 陈苏, 段雪锋, 袁晓铭. 基于加速度阵列反演循环剪应力–剪应变的积分位移方法影响[J]. 岩土工程学报, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
Citation: WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011

基于加速度阵列反演循环剪应力–剪应变的积分位移方法影响  English Version

基金项目: 

中国地震局工程力学研究所基本科研业务费专项项目 2019EEEVL0203

国家自然科学基金项目 51609218

黑龙江省自然科学基金项目 YQ2019E035

详细信息
    作者简介:

    王体强(1992—),男,博士研究生,主要从事动力离心模型试验测量与数据处理方法方面的研究。E-mail:wangtiqiang0313@126.com

    通讯作者:

    王永志, E-mail: yong5893741@163.com

  • 中图分类号: TU411

Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response

  • 摘要: 基于加速度阵列的循环剪应力–剪应变反演分析方法被广泛用于原位场地观测和物理模型试验,但积分位移方法、分布函数等关键因素的影响尚缺少认识。选取4种代表性一维剪切梁分布函数,利用一组动力离心模型试验,探讨了积分位移方法对反演剪应力、剪应变的影响特征与规律,并分析了滞回圈和模量阻尼比的变化趋势。结果表明:①积分位移方法对反演剪应力和剪应变影响显著,采用积分位移方法处理后的加速度时程求取剪应力是有效保障滞回圈光滑性和闭合性的重要条件;ARI与USGS方法相比,后者对原加速度时程相位和幅值的影响不可忽略。②线性、三次样条、加权残差等3种剪切梁分布函数取得剪应力、剪应变结果十分吻合,可忽略分布函数的影响,而余弦法分布函数获得结果离散性较大,不宜选取。③积分位移方法对剪切模量具有略微影响,但对阻尼比影响较为显著,ARI法获得阻尼比发展趋势符合一般规律认识,而USGS法与之相悖。研究方法和结论,为有效可靠获取原位场地、土工物理试验等循环剪应力–剪应变响应和验证本构关系模型,提供了重要指导依据和方法支撑。
    Abstract: The inverse analysis of accelerograph arrays for cyclic shear stress-strain response is widely used in in-situ monitoring and physical model tests, but the influences of the key factors such as integral methods and distribution functions still lack knowledge. Four representative one-dimensional shear beam distribution functions are selected, and a set of dynamic centrifugal model tests are used to clarify the influences of the integral methods and distribution functions on the inverse analysis of shear stresses and shear strains, and the features of the acquired hysteresis loops and modulus damping ratios are further analyzed. The results show: (1) The integral methods exhibit a visible impact on the inversion of the shear stresses and shear strains, and using the acceleration curves processed by the integral methods to obtain the shear stresses is an important condition for effectively ensuring the smoothness and closure of the hysteresis loops. Compared with the ARI method, the USGS method has a non-negligible influence on the phase and amplitude of the original acceleration curves. (2) The shear stresses and shear strains obtained by the three shear beam distribution functions of linear, cubic spline and weighted residuals are very consistent, and the influences of the distribution functions can be ignored. However, the results obtained by the cosine method distribution function are relatively discrete, which is not suitable for selection. (3) The dependence of the shear modulus on the integral methods is slight, but the damping ratios are evidently affected. The development trend of the damping ratios obtained by the ARI method conforms to the general understanding, while the USGS method is contrary to it. The research methods and conclusions may provide important guidance and method support for effectively and reliably obtaining the cyclic shear stress-strain response of in-situ site and geophysical tests and verifying the constitutive relationship models.
  • 图  1   基于加速度阵列的一维剪切梁模型示意图

    Figure  1.   Schematic diagram of one-dimensional shear beam model based on accelerograph arrays

    图  2   UC Davis半径9.1 m大型动力离心机

    Figure  2.   9.1 m-radius large dynamic centrifuge at UC Davis

    图  3   试验模型设计与测量传感器布设

    Figure  3.   Model configuration and layout of instruments

    图  4   振动台输入荷载及傅里叶谱

    Figure  4.   Dynamic loadings and Fourier spectra

    图  5   叠层梁的积分位移与实测位移对比

    Figure  5.   Comparison between integral displacements and measured displacements of laminated beam

    图  6   积分位移数据处理方法对反演剪应力时程影响

    Figure  6.   Influences of integral displacement methods on inverse analysis of shear stress time series

    图  7   积分位移数据处理方法对反演剪应力沿深度分布影响

    Figure  7.   Influences of integral displacement means on inversely calculated shear stress distribution along depth

    图  8   一维剪切梁分布函数对反演剪应力的时程影响

    Figure  8.   Influences of one-dimensional shear beam distribution functions on inversely calculated shear stress time series

    图  9   一维剪切梁分布函数对反演剪应力沿深度的分布影响

    Figure  9.   Influences of one-dimensional shear beam distribution functions on inversely calculated shear stress distribution with depth

    图  10   一维剪切梁分布函数对反演剪应变的时程影响

    Figure  10.   Dependence of inversely calculated shear strain time series on one-dimensional shear beam distribution functions

    图  11   一维剪切梁分布函数对反演剪应变随深度的分布影响

    Figure  11.   Sensitivity of inversely calculated shear strain along depth to one-dimensional shear beam distribution functions

    图  12   积分位移方法对反演剪应变的时程影响

    Figure  12.   Dependence of inversely calculated shear strain time series on integral displacement methods

    图  13   积分位移方法对反演剪应变沿深度的分布影响

    Figure  13.   Sensitivity of inversely calculated shear strain along depth to integral displacement methods

    图  14   积分位移方法对反演滞回圈的特征影响(箭头为起点)

    Figure  14.   Influences of integral displacement methods on characteristics of inversely calculated hysteresis loops

    图  15   积分位移方法对剪切模量的影响及拟合曲线

    Figure  15.   Dependence of inversely calculated shear modulus and fitting curves of integral displacement methods

    图  16   积分位移方法对阻尼比的影响及拟合曲线

    Figure  16.   Dependence of inversely calculated damping ratios and fitting curves of integral displacement methods

  • [1] 黄文熙. 土的弹塑性应力–应变模型理论[J]. 岩土力学, 1979, 1(1): 1–20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    HUANG Wen-xi. Theory of elastoplastic stress-strain model for soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    [2] 卢肇钧. 土的变形破坏机理和土力学计算理论问题[J]. 岩土工程学报, 1989, 11(6): 65–74. doi: 10.3321/j.issn:1000-4548.1989.06.006

    LU Zhao-jun. The failure mechanism of soils and its theoretical computations[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(6): 65–74. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.06.006

    [3] 沈珠江. 土体结构性的数学模型──21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95–97. doi: 10.3321/j.issn:1000-4548.1996.01.015

    SHEN Zhu-jiang. Mathematical model of soil structure─the core issue of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95–97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015

    [4]

    ZEGHAL M, ELGAMAL A W, TANG H T, et al. Lotung downhole array. II: evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363–378. doi: 10.1061/(ASCE)0733-9410(1995)121:4(363)

    [5]

    ELGAMAL A W, ZEGHAL M, PARRA E. Liquefaction of reclaimed island in Kobe, Japan[J]. Journal of Geotechnical Engineering, 1996, 122(1): 39–49. doi: 10.1061/(ASCE)0733-9410(1996)122:1(39)

    [6]

    DAVIS R O, BERRILL J B. Rational approximation of stress and strain based on downhole acceleration measurements[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 603–619. doi: 10.1002/(SICI)1096-9853(199808)22:8<603::AID-NAG936>3.0.CO;2-7

    [7] 陈国兴, 王炳辉, 孙田. 饱和南京细砂动剪切模量特性的大型振动台试验研究[J]. 岩土工程学报, 2012, 34(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm

    CHEN Guo-xing, WANG Bing-hui, SUN Tian. Dynamic shear modulus of saturated Nanjing fine sand in large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm

    [8] 杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287–295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm

    YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm

    [9]

    BRANDENBERG S J, WILSON D W, RASHID M M. Weighted residual numerical differentiation algorithm applied to experimental bending moment data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 854–863. doi: 10.1061/(ASCE)GT.1943-5606.0000277

    [10]

    KAMAI R, BOULANGER R. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. Boca Raton: CRC Press, 2009: 219–238.

    [11] 王永志, WILSON D W, KHOSRAVI M, 等. 动力离心模型试验循环剪应力–剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm

    WANG Yong-zhi, WILSON D W, KHOSRAVI M, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm

    [12] 王体强, 王永志, 袁晓铭, 等. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(增刊1): 565–573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. Reliability analysis of acceleration integral displacement method based on shaking table tests[J]. Rock and Soil Mechanics, 2019, 40(S1): 565–573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm

    [13] 王体强, 王永志, 袁晓铭, 等. 自适应鲁棒加速度积分新方法与可靠度分析[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2724–2737. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. A new type of adaptive robust acceleration integration approach and reliability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2724–2737 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm

    [14]

    CONVERSE A M, BRADY A G. BAP: Basic strong-motion accelerogram processing software; version 1.0[R]. U. S. Geology Survey, 1992, 92–296A.

    [15] 王永志, MOHAMMAD K, DANIEL W, 等. CDM格栅复合黏土地基地震反应离心试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2394–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm

    WANG Yong-zhi, MOHAMMAD K, DANIEL W, et al. Centrifuge modeling of seismic response of soft clay grounds improved by CDM grids[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2394–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm

    [16]

    KHOSRAVI M, TAMURA S, WILSON D W, et al. Reduction of seismic shaking intensity on soft soil sites using stiff ground reinforcement—Report 2 & 3: Big centrifuge test data MKH01-MKH02[R]. 2014.

    [17]

    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692.

    [18]

    BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488–1497.

    [19]

    AFACAN K B, BRANDENBERG S J, STEWART J P. Centrifuge modeling studies of site response in soft clay over wide strain range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013003.

  • 期刊类型引用(9)

    1. 孟凌霄,徐龙伟,王桂梅,姜润豪,孙湲惠,许英东,付涛. 接头形式与位置对装配式箱涵动力性能影响研究. 市政技术. 2024(06): 142-149 . 百度学术
    2. 李国维,米帅奇,仇红超,吴建涛,李军,吴桂胜. 深埋盖板涵路基填土应力场分布特征试验研究. 岩石力学与工程学报. 2022(11): 2311-2319 . 百度学术
    3. 王伟. 高速公路高填土路基病害及处理措施研究. 交通世界. 2021(Z2): 71-72 . 百度学术
    4. 陶庆东,何兆益,贾颖. 结构参数与填料特性对盖板涵洞土涵作用影响. 地下空间与工程学报. 2021(02): 468-478 . 百度学术
    5. 米帅奇,陈伟,苏彤,AGO Cadnel. 涵周土性状对高填方盖板涵涵顶应力影响分析. 粉煤灰综合利用. 2021(06): 34-40 . 百度学术
    6. 陶庆东,何兆益,贾颖. 涵洞-填土-地基共同作用的涵洞减载效应研究. 三峡大学学报(自然科学版). 2020(05): 67-74 . 百度学术
    7. 徐湉源,王明年,于丽. 高填方双层衬砌式明洞土压力和结构内力特性研究. 铁道学报. 2019(02): 146-153 . 百度学术
    8. 赵立芳,段金辉. 混凝土盖板涵的施工要点. 黑龙江交通科技. 2019(08): 116-117 . 百度学术
    9. 冯忠居,李少杰,郝宇萌,董芸秀,方元伟,胡海波,潘放,李军. 上埋式涵洞基础埋深效应下的地基承载力研究. 长江科学院院报. 2019(11): 83-90 . 百度学术

    其他类型引用(11)

图(16)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  32
  • PDF下载量:  84
  • 被引次数: 20
出版历程
  • 收稿日期:  2020-11-18
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回